

Advanced OLAP: Making the Hard Stuff Easy!

Collaborate 2013

IOUG Presentation #732 Chris Claterbos

Vlamis Software Solutions 816-781-2880 http://www.vlamis.com

Presentation Agenda

- Introduction
- Why Oracle OLAP
- Problem 1: Count Distinct
- Problem 2: Time Series Analysis
- Problem 3: Measure Hierarchies
- Conclusion
- Q & A

Vlamis Software Solutions

- Vlamis Software founded in 1992 in Kansas City, Missouri
- Developed more than 200 Oracle BI systems
- Specializes in ORACLE-based:
 - Data Warehousing
 - Business Intelligence
 - Design and integrated BI and DW solutions
 - Training and mentoring
- Expert presenter at major Oracle conferences
- www.vlamis.com (blog, papers, newsletters, services)
- Developer for IRI (former owners of Oracle OLAP)
- Co-author of book "Oracle Essbase & Oracle OLAP"
- Beta tester for OBIEE 11g
- Reseller for Simba and Nokia map data for OBIEE
- HOL Coordinator for BIWA Summit 2013

Chris Claterbos

Chris Claterbos, Technical Director

- Technical Director for Vlamis Software Solutions, Inc.
- DBA and applications developer for Oracle products, since 1981.
- Beta tester and early adopter of including OBIEE11g, Oracle 8i, 9i,
 10g and 11g, and Jdeveloper, Oracle OLAP, Data Warehouse Builder
- Speaker and author.
- Previous IOUG Focus Area Manager for Data Warehousing and BI

OLAP Analysis

Why do we need OLAP?

Traditional BI: ROLAP

Power

- o Highly scalable
- Level based hierarchies
- o Drill, slice, dice
- Timely
- Attribute-based analysis

Pain

- Parent-child "force fit"
- Column-based analytics only
- Poor Performance with large datasets

Traditional BI: OLAP

Power

- Flexible, member-base analytics
- Parent-child & Level Based
- Expand/collapse outline
- o Fast
- What-if, plan, consolidate, forecast, etc.

Pain

- Transaction detail and scale
- Limited Attributes

Real Benefits of Using OLAP

- No Summary Tables required
- Reduced repository and maintenance time
- Development cycles times are reduce
 - Testing of design changes take less time
 - Change are easier to make and faster to implement
- Significantly Faster Performance!
 - Recent deployments performed 50 to 300% faster
 - If calculations are done in OLAP server performance is even better
- IT's NOT AS HARD AS YOU THINK!

The Hard Stuff

There are several things that are hard for relational OLAP to do or are very slow:

Unique Counts (count distinct)

Time Series Analysis

Measure Hierarchies

Unique Counts

Performing unique counts over dimensional data can be slow and complicated:

"I want to see unique registrations for my web store by day, month, year across my storefronts and departments."

This is NOT a simple Additive Measure!

You must perform a count(distinct) starting at the bottom and computing the value for every combination of dimensions and levels.

How would you do it in SQL?

Well you need ONE QUERY at MONTH Level...

COUNT(distinct BENEF_ID)...GROUP BY Month

🕹 Oracle SQL	_*Plus				
Fichier Edition	Recherche Optio	ns Aide			
where AIDE_	zūr>				
AIDE_ID 122129	CANCOM3_IC CO-34057) TYPEVEN_ID 1335500	MOIS_I (200101	COUNT(DISTINCT(BENEF_ID))	
122129	CO-34057	1335500	200101	1	
122129	CO-34057	1335500	200103	i	
122129	CO-34057	1335500	200104	1	
122129	CO-34057	1335500	200105	2	
122129	CO-34057	1335500	200106	3	
122129	CO-34057	1335500	200107	3	
122129	CO-34057	1335500	200108	3	
122129	CO-34057	1335500	200109	3	
122129	CO-34057	1335500	200110	4	
122129	CO-34057	1335500	200111	4	
122129	CO-34057	1335500	200112	4	

How would you do it in SQL?

.... and ANOTHER DIFFERENT QUERY at YEAR Level...

COUNT(distinct BENEF_ID)...GROUP BY SUBSTR(Month,1,4)

🕹 Oracle SQL*Plus				
Fichier Edition Recherche Options Aide				
OG.COMPTAG	E where AIDE CANCOM3_ID, I	_ID = '122129	' and CANCOI	JBSTR(MOIS_ID, 1, 4), count (distinct BENEF_ID) FROM C M3_ID = 'CO-34057' and TYPEVEN_ID = '1335500' group by ID, 1, 4) order by AIDE_ID, CANCOM3_ID, TYPEVEN_ID, SU
AIDE_ID	CANCOM3_II	D TYPEVEN_ID	SAB2 CONN.	(DISTINCTBENEF_ID)
122129	CO-34057	1335500	2000	 1
122129	CO-34 0 57	1335500	2001	4
122129	CO-34057	1335500	2002	3
122129	CO-34 0 57	1335500	2003	4
122129	CO-34 0 57	1335500	2004	5
122129	CO-34 0 57	1335500	2005	4
122129	CO-34057	1335500	2006	4
122129	CO-34057	1335500	2007	4
122129	CO-34057	1335500	2008	4
122129	CO-34057	1335500	2009	3
122129	CO-34057	1335500	2010	3
11 ligne(s) sélectionnée(s).				

How would you do this in SQL?

...WORST:

You only de-duplicated on ONE SINGLE dimension here but you have to do it on ALL dimensions at the same time!

→ Need to write a specific query for each level combination across all dimensions !!!

```
YEAR / DISTRICT / SOCIAL ALLOC. TYPE / EVENT TYPE → 1 Query YEAR / REGION / SOCIAL ALLOC. TYPE / EVENT TYPE → 1 Query MONTH / DISTRICT / SOCIAL ALLOC. TYPE / EVENT TYPE → 1 Query MONTH / REGION / SOCIAL ALLOC. TYPE / EVENT TYPE → 1 Query
```

→ Hard to maintain

0.00

→ Low performance THIS CAN TAKE MINUTES TO RUN!

. . .

Doing it in Oracle OLAP

Challenge!

- Oracle OLAP does not yet have a count distinct function!
- But there is a way to do this!

Doing this in Oracle OLAP

SOLUTION:

- 1. Use Oracle OLAP
- 2. Agregate with MAXIMUM on each dimension to be de-duplicated
- 3. THEN, agregate with TOTAL on the dimension you are counting

Respect that order (Easy with AWM, just use arrows to set the dimension you are counting along in the last position).

Doing it in OLAP

Book1				
4	А	В		
1	All Offices			
2	Michele Lombardo Group			
3	All Segments			
4	All Customers			
5				
6		Distinct Customers		
7		+ All Products		
8	- All Years	1,000		
9	+ 2008	996		
10	- 2009	991		
11	+ 2009 HY1	952		
12	- 2009 HY2	948		
13	- 2009 Q3	908		
14	2009 / 07	746		
15	2009 / 08	632		
16	2009 / 09	548		
17	+ 2009 Q4	712		
18	+ 2010	999		
19	+ 2011			

- Query returns results quickly (pre-solved)
- **Retuns in seconds not minutes!**
- Can be used in Excel, OBIEE, other SQL reporting tools.

Data at QTR level is not the total of data at MONTH level!

Unique Count Measures

Time Series Analysis

Answer this question:

Show me the current sales for this month, sales year to date, sales same period last year and sales year to date last year.

How would we do that in SQL?

Very long complex select statement!

```
WITH sales dense AS
  (SELECT [breakout columns]
     sales,
     SUM(sales) over(PARTITION BY [breakout columns]
   ORDER BY [time column] ASC range BETWEEN unbounded
            preceding AND CURRENT ROW) AS sales ytd
   FROM
    (SELECT [breakout columns]
       a.sales
     FROM
      (SELECT [breakout columns]
         SUM(f.sales) sales
       FROM [table list]
       WHERE [star join and other filters]
       GROUP BY [breakout columns)
    a PARTITION BY (breakout columns)
    RIGHT OUTER JOIN
      (-- need list of all time periods
       SELECT DISTINCT [time columns]
       FROM time dim
    b ON([join on relevant time level]))
 Continued...
```

Performs poorly!

What would it look like from OLAP

Query from OLAP Cubes:

```
SELECT [breakout columns],
sales,
sales_prior_year
sales_ytd,
sales_ytd_prior_year
FROM sales_cube_view
WHERE [star join]
```

- OLAP can do many more Complex Time Series Analysis with relatively low cost!
- Returns results in seconds! For ALL LEVELS of TIME

Time Series Analysis

Measure Hierarchies

- Several Applications require that Measures have rollups and hierarchies.
- Oracle OLAP Cube Measures are not Hierarchical
- How do we do something like this?

	2008	2009	2010	Grand Total
☐ Measures	336,227	782,819	783,045	1,902,092
☐ Gross Margin	336,227	782,819	783,045	1,902,092
☐ Net Revenue	21,579,338	21,184,025	21,638,729	64,402,092
Gross Revenue	23,500,000	23,000,000	23,500,000	70,000,000
Discount Amount	1,920,662	1,815,975	1,861,271	5,597,908
Units	2,082,264	1,793,724	1,781,233	5,657,221
☐ Net Costs	21,243,111	20,401,206	20,855,684	62,500,000
Fixed Costs	9,033,594	8,581,538	8,884,869	26,500,000
Variable Costs	12,209,517	11,819,668	11,970,816	36,000,000

- To do this in Oracle OLAP is very easy!
- Just define measures as a Dimension and establish parentage and rollup rules just like any other dimension!

 Measure Dimension can be value based or level based:

- Cube can be stored or formula based.
- Example of Formula Based:

Specify General Calculated Measure Information				
<u>N</u> ame:	PRIOR_PERIOD			
ID:	BISAMPLE.OLAP_REV_M.PRIOR_PERIOD			
Short Label:	Prior Period			
<u>L</u> ong Label:	Prior Period			
<u>D</u> escription:	Prior Period			
Calc <u>u</u> lation Type:	Prior Period 🔻			
Calculation:				
Expression:				
LAG(OLAP_REV_M.VALUE, 1) OVER HIERARCHY (OLAP_TIME.FISCAL)				

The Results:

	☐ Total Products			
		∃ BizTech		HomeView
☐ Gross Margin	1,902,092	-1,878,401	1,864,090	1,916,402
☐ Net Cost	62,500,000	25,130,497	18,938,006	18,431,498
Fixed Cost	26,500,000	10,652,422	8,025,442	7,822,136
Variable Cost	36,000,000	14,478,075	10,912,564	10,609,362
☐ Net Revenue	64,402,092	23,252,096	20,802,096	20,347,900
Discount Amount	5,597,908	2,247,904	1,697,904	1,652,100
Gross Revenue	70,000,000	25,500,000	22,500,000	22,000,000
Number of Orders	71,000	28,474	21,587	20,939
Units	5,657,221	2,223,811	1,695,983	1,737,427

Complex Rollups

- What is simple aggregations will not satisfy the needs?
- Using Oracle OLAP Model feature complex calculation and aggregation rules can be defined to handle any requirements.

Measure Hierachies

Oracle Test Drive

- Free to try out Oracle Bl
- Go to <u>www.vlamis.com/testdrive-registration/</u>
- Runs off of Amazon AWS
- Hands-on Labs based on Collaborate 2012 HOLs
- Test Drives for:
 - Oracle BI
 - BI Publisher
 - Microsoft Excel against Oracle OLAP
 - Oracle Data Mining
 - Map Views in OBIEE
- Once sign up, you have private instance for 5 hours
- Available now

BIWA OBIEE 11.1.1.7 April 18 TechCast

Back by popular demand:

What's New in Oracle BI 11.1.1.7 BIWA TechCast with live demonstration

Topic Overview

- Major new release with lots of features (tick of tick-tock cycle)
- New data visualizations and wizard
- New hierarchical column and group display choices
- Freeze headers/scroll bars for tables and pivot tables
- New dashboard layout options for multiple resolutions and mobile
- New dashboard and analyses templating, printing, and saving capabilities
- New Navigation Trail capabilities (bread crumbs)
- Integration with Endeca search engine
- New BI Mobile capabilities and features

 New BI Publisher layout enhancements, integration with dashboards, and data model features

- View and manipulate BI content in SmartView in Excel
- Enhanced export capabilities to MS Office and Excel
- New Hadoop integration with Native HiveQL
- Extended Essbase capabilities with OBI
- New Oracle R Enterprise (ORE) integration and capabilities
- Exalytics enhancements
- See http://tinyurl.com/BIWA-april18 for more information and to register
- April 18, 2013 at 11am Central time

Vlamis Collaborate Presentations

Presenter	Session	Time	Title
Tim Vlamis	OAUG	Mon 2:30 – 3:30	12633 Data Visualization Best Practices in Oracle Business Intelligence Applications
Tim Vlamis	IOUG	Tues 2:00 – 3:00	726 Advanced Dashboard Design in OBI 11g
Dan Vlamis	IOUG	Wed 8:15 – 9:15	915 Using Map Views and Geospatial Analytics in OBI 11g
Dan Vlamis	IOUG	Wed 3:00 – 4:00	785 Blazing BI: The Analytic Options to the Oracle Database
Chris Claterbos	IOUG	Wed 4:15 – 5:15	732 Advanced OLAP: Making the Hard Stuff Easy
Cathye Pendley	IOUG	Wed 4:15 – 5:15	798 Vlamis Process and Maturity Model: BI Project Best Practices
Chris Claterbos	OAUG	Thurs 12:15 – 1:15	12837 Mobile BI: Using When and Where You Need It

SOFTWARE SOLUTIONS

Advanced OLAP: Making the Hard Stuff Easy!

Collaborate 2013

IOUG Presentation #732 Chris Claterbos

Vlamis Software Solutions 816-781-2880 http://www.vlamis.com