Making Your Data Warehouse FASTER

Collaborate 2014 Session 765

Chris Claterbos & Dan Vlamis Vlamis Software Solutions 816-781-2880

claterbos@vlamis.com dvlamis@Vlamis.com

http://www.vlamis.com

Dan Vlamis and Vlamis Software Solutions

- Vlamis Software founded in 1992 in Kansas City, Missouri
- Developed more than 200 Oracle BI systems
- Specializes in ORACLE-based:
 - Data Warehousing
 - Business Intelligence
 - Design and integrated BI and DW solutions
 - Training and mentoring
- Expert presenter at major Oracle conferences
- www.vlamis.com (blog, papers, newsletters, services)
- Developer for IRI (former owners of Oracle OLAP)
- Co-author of book "Oracle Essbase & Oracle OLAP"
- Beta tester for OBIEE 11g
- Reseller for Simba and Nokia map data for OBIEE
- HOL Coordinator for BIWA Summit 2013

Chris Claterbos

Chris Claterbos, Technical Director

- Technical Director for Vlamis Software Solutions, Inc.
- DBA and applications developer for Oracle products, since 1981.
- Beta tester and early adopter of including OBIEE11g, Oracle 8i, 9i,
 10g and 11g, and Jdeveloper, Oracle OLAP, Data Warehouse Builder
- Speaker and author.
- Previous IOUG Focus Area Manager for Data Warehousing and BI

Data Warehousing Challenges

- Businesses are integrating business intelligence into every level of their operations
- Data warehouses are storehouses of historical data organized in a way to provide for the reporting needs of the business
- As the integration of business intelligence grows, so do the demands on the data warehouse
- How does IT typically respond? Summary tables, materialized views, enormous effort to improve SQL queries and responsiveness, and bigger and better hardware
- Why not OLAP?
 - It is too hard
 - It is incompatible
 - I don't understand that

Definition of OLAP

- OLAP stands for On Line Analytical Processing. That
 has two immediate consequences: the on line part
 requires the answers of queries to be fast, the
 analytical part is a hint that the queries itself are
 complex.
- i.e. Complex Questions with FAST ANSWERS!

Why use OLAP?

- Empowers end-users to do own analysis
- Frees up IS backlog of report requests
- Ease of use
- Drill-down
- No knowledge of SQL or tables required
- Exception Analysis
- Variance Analysis
- EASY to IMPLEMENT and SUPPORT!

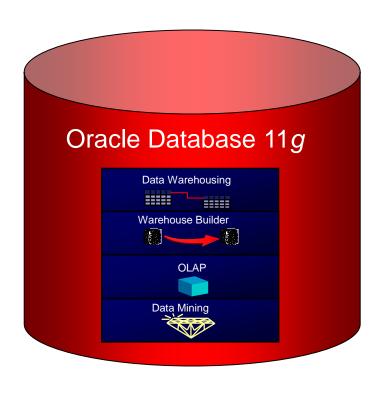
What Does Oracle OLAP Add to a DW?

- Multidimensional user view of data
- Users create own reports
- Users create own measures
- Easy drill-down, rotate
- Iterative discovery process (not just reports)
- Ad-hoc analysis
- Easy selection of data with business terms
- OLAP DML with what-if, forecasting
- Platform for extensions

OLAP Option – High-level View

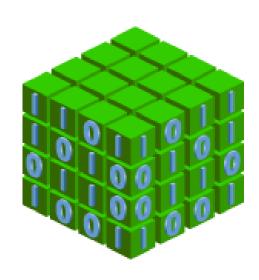
- Advanced analytics
- Integrated in RDBMS
- Easy to develop
- Easy to use
- Facilitate collaboration
- Flexible deployment
- Scaleable and performant
- True Relational Multidimensional database

Why OLAP for BI?

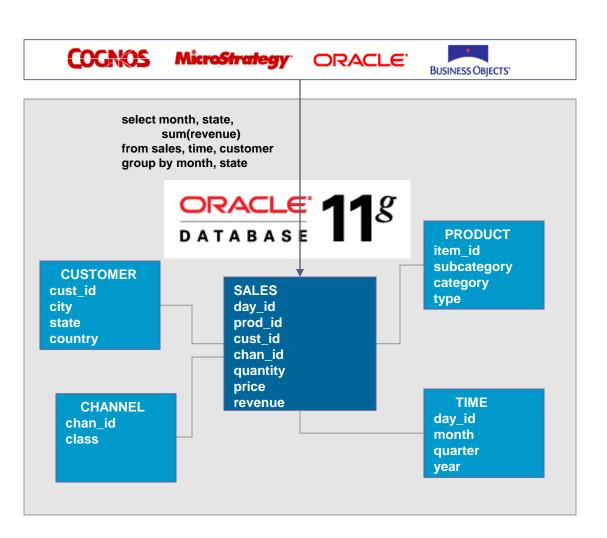

- BI often presents data dimensionally
- Dimensions are natural way to look at data
 - By, across, over, time, geography, product
 - Comparison of multiple dimension values
- Multi-dimensional storage of data speeds analysis
- Natural to express dimensional comparisons
 - Share of parent
 - Compared to last year
- Allows for hierarchical dimensions with multiple levels
 - E.g. by country, drill to state, drill to city

Oracle OLAP

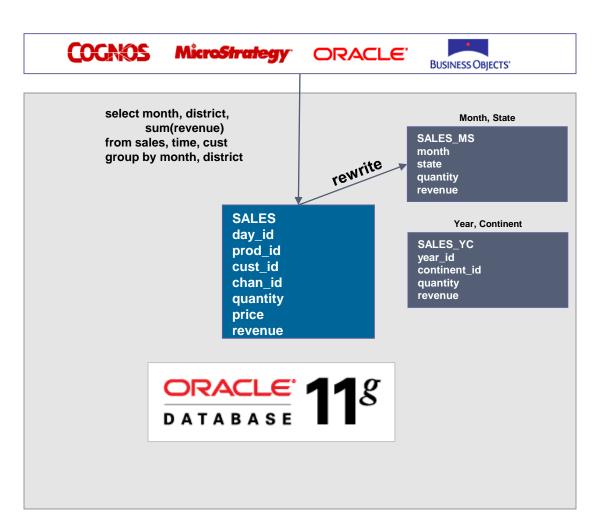
Leveraging Core Database Infrastructure


- Single RDBMS-MDBMS process
- Single data storage
- Single security model
- Single administration facility
- Grid-enabled
- Accessible by any SQL-based tool
- Embedded BI metadata
- Connects to all related Oracle data

Oracle OLAP


- A summary management solution for SQL based business intelligence applications
 - An alternative to table-based materialized views, offering improved query performance and fast, incremental update
- A full featured multidimensional OLAP server
 - Excellent query performance for adhoc / unpredictable query
 - Enhances the analytic content of Business intelligence application
 - Fast, incremental updates of data sets

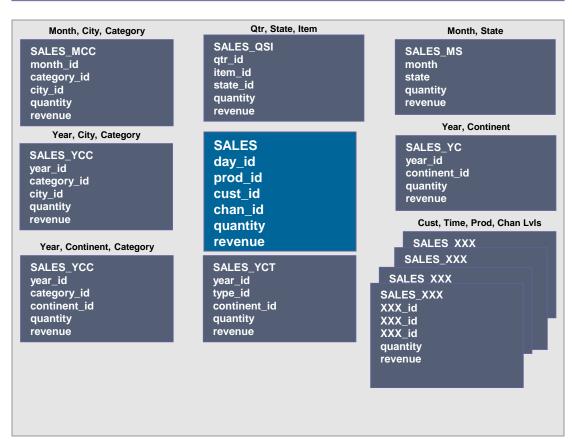
Materialized Views Typical MV Architecture Today



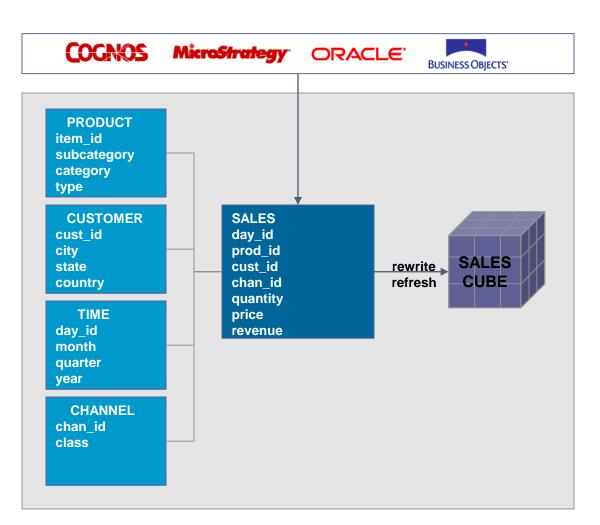
- Query tools access star schema stored in Oracle data warehouse
- Most queries at a summary level
- Summary queries against star schemas can be expensive to process

Materialized Views Automatic Query Rewrite

- Most DW/BI customers use Materialized Views (MV) today to improve summary query performance
- Define appropriate summaries based on query patterns
- Each summary is typically defined at a particular grain
 - Month, State
 - Qtr, State, Item
 - · Month, Continent, Class
 - · etc.
- The SQL Optimizer automatically rewrites queries to access MV's whenever possible

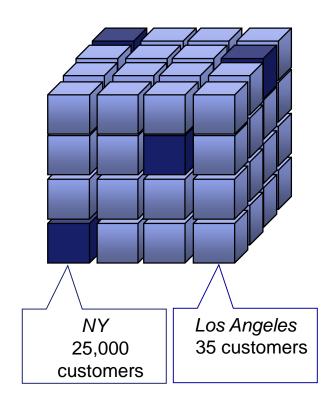

Materialized Views Challenges in Ad Hoc Query Environments

MicroStrategy



- Creating MVs to support ad hoc query patterns is challenging
- Users expect excellent query response time across any summary
- Potentially many MVs to manage
- Practical limitations on size and manageability constrain the number of materialized views

Cube Replaces Materialized Views Much Better Manageability & Performance



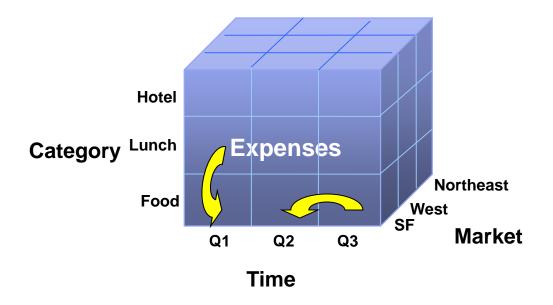
- A single cube provides the equivalent of thousands of summary combinations
- The 11g SQL Query
 Optimizer treats OLAP cubes as MV's and rewrites queries to access cubes
 transparently
- Cube refreshed using standard MV procedures

Cost Based Aggregation Pinpoint Summary Management

- Precomputed
- Computed when queried

- Improves aggregation speed and storage consumption by precomputing cells that are most expensive to calculate
- Easy to administer
- Simplifies SQL queries by presenting data as fully calculated

Easy Analytics Fast Access to Information Rich Results

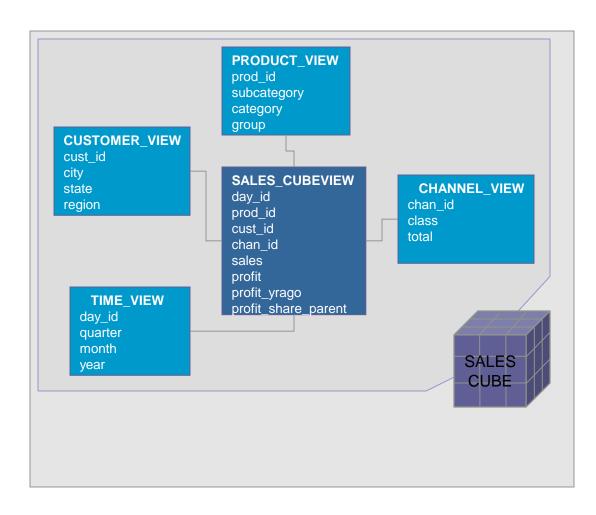

- Time-series calculations
- Calculated Members
- Financial Models
- Forecasting
 - Basic
 - Expert system
- Allocations
- Regressions
- Custom functions
- ...and many more

Snapshot of some functions

deprdect	aggregate	abs	rank	chadims
deprdecisw	allocate	antilog	rem	instat
deprsl	categorize	antilog10	remainder	limit function
deprsoyd	correlation	arccos	round	statall
fintsched	fcopen	arcsin	sign	statdepth
fpmtsched	fcquery	arctan	sin	statequal
growrate	info	arctan2	sinh	statfirst
irr	norm al	bin_to_num	smooth	statlast
npv	random	bitand	sort	statlen
vintsched	stddev	ceil	sqrt	statlist
vpmtsched	any	cos	tan	statmax
cumsum	average	cosh	tanh	statmin
lag	count	decode	truncate	statrank
lagabspct	every	ехр	width_bucket	statval
lagdif	largest	floor	begindate	coalesce
lagpct	median	greatest	dayof	na2
lead	mode	intpart	ddof	nafill
movingaverage	none	least	enddate	naflag
movingmax	percentage	log function	endof	nullif
movingmin	smallest	log10	isdate	nvl
movingtotal	forecast	max	makedate	nvl2
total	modulo	min	mmof	ascii

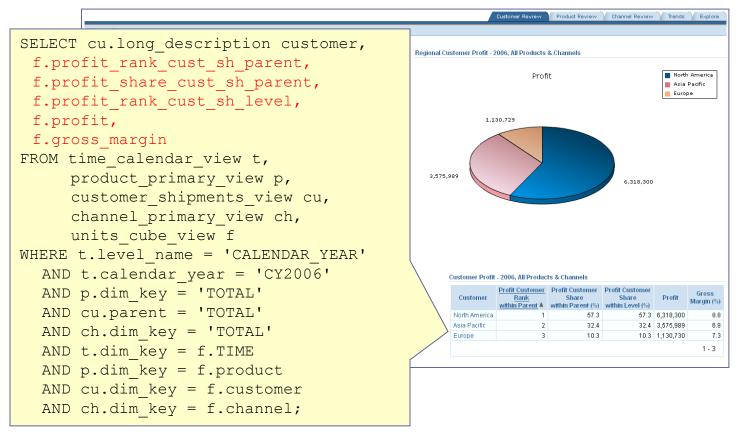
How do Expenses compare this Quarter versus Last Quarter What is an Item's Expense contribution to its Category?

- Data stored in dense arrays
- Offset addressing no joins
- More powerful analysis
- Better performance


One Cube Accessed Many Ways...

- One cube can be used as
 - A summary management solution to SQL-based business intelligence applications as cube-organized materialized views
 - A analytically rich data source to SQL-based business intelligence applications as SQL cube-views
 - A full-featured multidimensional cube, servicing dimensionally oriented business intelligence applications

Cube Represented as Star ModelSimplifies Access to Analytic Calculations


- Cube represented as a star schema
- Single cube view presents data as completely calculated
 - Analytic calculations presented as columns
 - Includes all summaries
- Automatically managed by OLAP

Empowering Any SQL-Based Tool Leveraging the OLAP Calculation Engine

Application Express on Oracle OLAP

Oracle OLAP Summary

- Improve the delivery of information rich queries by SQL-based business intelligence tools and applications
 - Fast query performance
 - Simplified access to analytic calculations
 - Fast incremental update
 - Scalable
 - Centrally managed by the Oracle Database

Using OLAP with BI Front Ends

- Where Can I use Oracle OLAP
 - Oracle Business Intelligence Enterprise Edition (OBIEE)
 - Microsoft Excel (Spreadsheet Addin or Simba)
 - Various 3rd Parties (Business Objects etc)
 - SQL can be used with just about all the others:
 - Tableau
 - MicroStrategy
 - Cognos
 - Custom Apps using any tool that can access Oracle SQL.

Advantages of Using OBIEE

- Enterprise BI Solution
- Rapid Deployment using OLAP Metadata
- Ability to create Federated Queries (OLAP on Top of Relational Detail... Seemless Drilling)
- Ability create Drill out to details


Viewing Cubes in OBIEE

Accessing Cubes via SQL

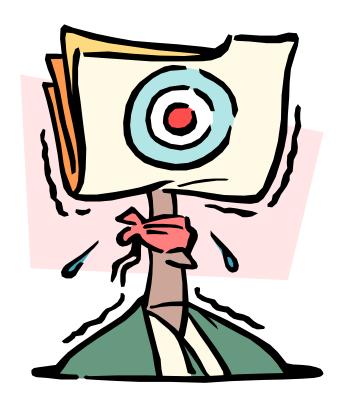
Oracle Test Drive

- Free to try out OBI, OAA and Big Data
- Go to www.vlamis.com/td
- Runs on Amazon AWS
- Hands-on Labs based on Collaborate 2012 HOLs
- Test Drives for:
 - OBIEE, Map Views in OBIEE
 - BI Publisher
 - Microsoft Excel against Oracle OLAP
 - OAA/Oracle Data Mining, Oracle R Enterprise
 - Big Data
- Available now

Vlamis Collaborate Presentations

Presenter	Session	Time	Location	Title
Tim Vlamis	IOUG	Tues 4:15 – 5:15 PM	Level 3, Toscana 3710	Managing the Social Responsibility Challenges of Analytics in 21st Century Organizations
Tim Vlamis	OAUG	Tues 5:30 – 6:30 PM	Level 3, San Polo – 3504	14787 Dashboard and Visualization Best Practices for Oracle BI Applications
Dan Vlamis	IOUG	Wed 8:30 – 9:30 AM	Level 3, San Polo – 3405	711 Data Visualization for Mobile Devices with OBI 11g
Chris Claterbos	IOUG	Thurs 3:00 – 4:00 PM	Level 3, San Polo – 3405	765 Making Your Data Warehouse FASTER

Mark Your Calendars <u>Now!</u>


BIWA Summit 2015, Jan 27-29 Oracle HQ Conference Center

Accepting Abstracts NOW!

Business Intelligence, Warehousing and Analytics IOUG Special Interest Group

www.biwasummit.com

Thank You for Attending Session 711 **Data Visualization for Mobile Devices with OBI 11g**

Presenter Information

Dan Vlamis, President

Chris Claterbos, Technical Director

Vlamis Software Solutions, Inc.

816-781-2880

For more information go to www.vlamis.com

Making Your Data Warehouse FASTER

Collaborate 2014 Session 765

Chris Claterbos & Dan Vlamis Vlamis Software Solutions 816-781-2880

claterbos@vlamis.com

dvlamis@Vlamis.com http://www.vlamis.com