#### **SOFTWARE SOLUTIONS**

# Forecasting, Prediction Models, and Times Series Analysis with Oracle Business Intelligence and Analytics

#### **Rittman Mead BI Forum 2013**

Dan Vlamis and Tim Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com



#### **Presentation Agenda**

- Understanding classification and forecasting (predictions)
- Use of Geneva Forecasting engine in Oracle OLAP
  - Holt-Winters and time series
  - Parameter choices
- ARIMA forecasting algorithm in R
  - Use Oracle R Enterprise
- Use of time dimension and time series functions in OBI





#### **Dan Vlamis and Vlamis Software Solutions**

- Founded in 1992 by Dan Vlamis in Kansas City, MO
- Developed/implemented more than 200 Oracle BI systems
- Specializes in ORACLE-based:
  - Business Intelligence
  - Analytic Options to Oracle DB (OLAP, Data Mining, Spatial)
  - Data Warehousing
  - Training and mentoring
- Expert presenter at major Oracle conferences
- www.vlamis.com (blog, papers, newsletters, services)
- Co-authored book "Oracle Essbase & Oracle OLAP"
- Beta tester for OBIEE 11g
- Reseller for Simba and Nokia map data for OBIEE
- HOL Coordinator for BIWA Summit 2013







#### Tim Vlamis' Bio

- 20+ years experience in business modeling and valuation, forecasting, and scenario analyses
- Trainer for Oracle University Two-Day Data Mining Course
- Professional Certified Marketer (PCM) from AMA
- Active Member of NICO (Northwestern Institute on Complex Systems)
- Adjunct Professor of Business Benedictine College
- MBA Kellogg School of Management (Northwestern)
- BA Economics Yale University





# Forecasting Today

- Predictions are the holy grail of BI systems and initiatives.
- Most all corporations have need for forecasting.
- Typical forecasting systems
  - Are stand alone or from ERP (not integrated to BI system)
  - Tend to use straight line or heuristic calculations.
  - Not always integrated into the business.
  - Are often tied directly to the budgeting process
- High level of angst surrounding forecasts.





# Forecasting Should...

- Should be integrated with rest of BI system.
- Should be another series of measures that are revealed in the context of historic information.
- Should be a part of the Common Enterprise Model.
- Should have visibility across functional areas and roles in corporations
- Should leverage most powerful calculation tools (database and BI system)
- Ideally adjusted based on an integrated view across corporate functions (marketing, operations, finance, etc.)





# **Forecasting Methodologies**

- Rule-based heuristic (last period, last period +5%, etc.)
- Cross-sectional methodologies (point in time)
- Time series (time sequenced data series)
- Mixed models
- Averages (moving, weighted, etc.)
- Linear and Non-linear regressions (line fitting)
- Transforms, projections, min/max





# **Methodologies for Today**

- OLAP Geneva Forecasting Engine
  - Holt Winters for time series
- Oracle R Enterprise
  - ARIMA
- ODM Classification and Regression (overview)
- OBIEE Time Series Functions (overview)





# **OLAP Geneva Forecasting Engine**

- FCOPEN function -- Creates a forecasting context.
- FCSET command -- Specifies the forecast characteristics.
- FCEXEC command -- Executes a forecast and populates Oracle OLAP variables with forecasting data.
- FCQUERY function -- Retrieves information about the characteristics of a forecast or a trial of a forecast.
- FCCLOSE command -- Closes a forecasting context.





#### **METHOD** 'method'

- AUTOMATIC best fit for the data. (Default)
- LINREG linear regression (y=a\*x+b) is fitted to the data.
- NLREG1 nonlinear regression x'=log(x) and y'=log(y) a polynomial model between x and y(y=c\*x^a).
- NLREG2 nonlinear regression x'=x and y'=ln(y) an exponential model between x and y(y=c\*e^ax).
- NLREG3 nonlinear regression x'=log(x) and y'=y a logarithmic model between x and y(y=a\*log(x)+b).
- NLREG4 nonlinear regression method ix'=1/x and y'=1/y an asymptotic curve (y=x/(a+bx)).
- NLREG5 nonlinear regression method x'=x and y'=ln(y/(K-y)) an exponential asymptotic curve (y=cKe^ax/(1+ce^ax)).
- SESMOOTH single exponential smoothing method intended for short term forecasts of non-seasonal data.
- **DESMOOTH** double exponential smoothing method exponential smoothing is applied to both the series and the trend term.
- CROSTON Croston's Intermittent Demand method. used for intermittent data where more than half of the observations are zero
- HOLT/WINTERS "triple" exponential smoothing. used on seasonal data





# **Using "Holt-Winters"**

- Triple "Exponential Smoothing" methodology
- Used for data suspected to be seasonal
- Needs multiple seasons
- Assumes regular periods
- Pre/post processing may be necessary (fiscal calendar 445, irregular holidays, "Black Swans", outages, etc.)





#### **Exponential Smoothing**

- Methodology for smoothing data and preferencing more recent periods when doing time series forecasts.
- Similar conceptually to a weighted moving average
- Weights decline according to an exponential function.  $\{1, (1-\alpha), (1-\alpha)^2, (1-\alpha)^3, ...\}$
- Higher values give more weight to more recent periods
- Single (weighted average of most recent observation and the most recent smoothed statistic)
- Double (trend either up or down)
- Triple (period effect)





#### **FCSET Parameters**

- ALLOCLAST {YES|NO}
- ALPHA {MAX|MIN|STEP} decimal
- APPROACH {'APPAUTO'|'APPMA
   NUAL'
- BETA {MAX|MIN|STEP} decimal
- COMPSMOOTH {YES|NO}
- CYCDECAY {MAX|MIN} decimal
- GAMMA {MAX|MIN|STEP} decimal
- HISTPERIODS integer
- MAXFACTOR decimal
- METHOD 'method'
- MINFCFACTOR decimal
- MPTDECAY {MAX|MIN} decimal

#### NTRIALS integer

- PERIODICITY cycle-spec
- RATIO decimal
- SMOOTHING {YES|NO}
- TRANSFORM {'TRNOSEA'|'TRSEA '|'TRMPT'}
- TRENDHOLD {MAX|MIN|STEP} de cimal
- WINDOWLEN integer





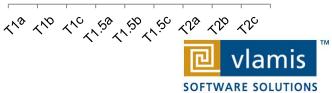
#### Alpha, Beta, Gamma Setting

- Default Max is 0.3
- Default Min is 0.1
- Default Step is 0.1 (.05<= divisible value<=0.2)</li>
- Greater value means nearer periods have more weight.
- Lower value means periods have more equal weight.





#### Recommendations


- Be careful of accepting the APPAUTO setting
- Be aware of Embedded total time dimensions
- Match HISTPERIODS with PERIODICITY for best results
- PERIODICITY cycle-spec is hierarchical from higher grain to lower
  - Ex {52,7} 52 weeks in a year, 7 days in a week
  - Ex {4,13,7} 4 quarters in a year, 13 weeks in a quarter, 7 days in a week
  - Ex {12} 12 months in a year
  - Months are challenging to incorporate with other periods



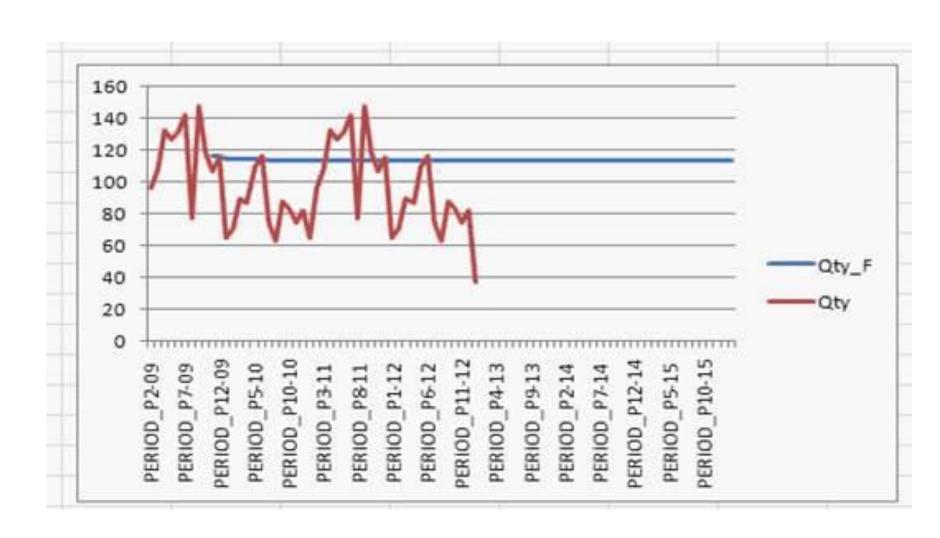


# **Case Study Using Oracle OLAP**

- Forecasted values from Oracle OLAP made no sense
- Client trying to use Best Fit complicates study because don't know what method chosen
- Avoid tendency to inherit mistakes
- Problem in "HISTPERIODS" parameter
  - Solution: set HISTPERIODS to number of data points
- Problem in forecasting on hierarchical dimension –
   12 month periods, 1 year period throwing off forecast
  - Solution: LIMIT TIME TO TIMELEVEL 'PERIOD'
- 4-4-5 "periods" artificially inflate every 3<sup>rd</sup> period
- Added 3<sup>rd</sup> year average of 2 years

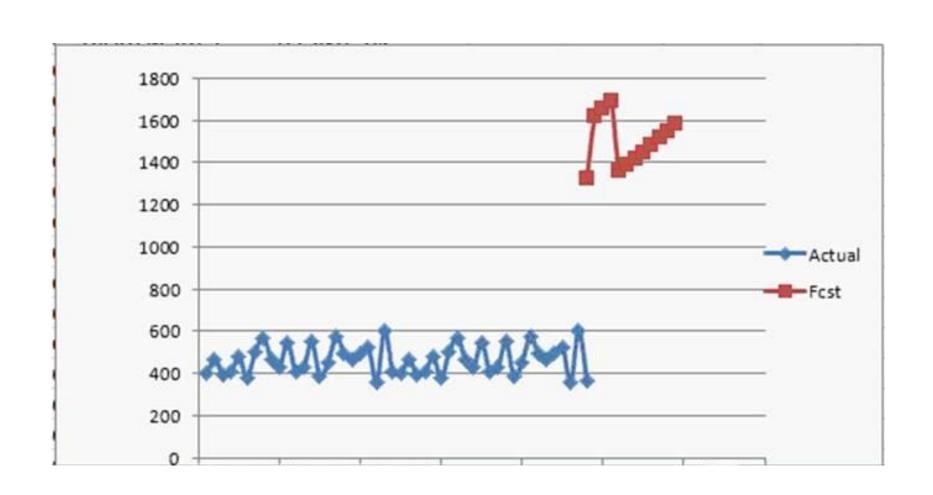





# **Example OLAP DML Forecast Program**

```
vrb handle int
"Removed error handling and definition of temporary variables such as DJOFCST2 C SEASONAL
LIMIT DJOFCST2 C MEASURE DIM TO 'QTY HW'
handle = FCOPEN('MyForecast')
limit djotime d2 to djotime d2 levelrel eq 'PERIOD'
SORT DJOTIME D2 a DJOTIME D2 END DATE
"Set forecast parameters for 'best fit'
fcset handle method 'HOLT/WINTERS' APPROACH 'APPMANUAL' SMOOTHING 'YES' MAXFCFACTOR 10.0 TRANSFORM 'TRSEA' -
     periodicity 12 histperiods 36 BETA MAX 0.5
"Execute the forecast - save seasonal and seasonal smoothed into the variables just defined
FCEXEC _handle time DJOTIME_D2 INTO DJOFCST2_C_STORED -
       seasonal DJOFCST2 C SEASONAL -
       smseasonal DJOFCST2 C SMSEASONAL backcast DJOFCST2 C QTY
ALLSTAT
"Close the forecast
FCCLOSE _handle
update
commit
return
```

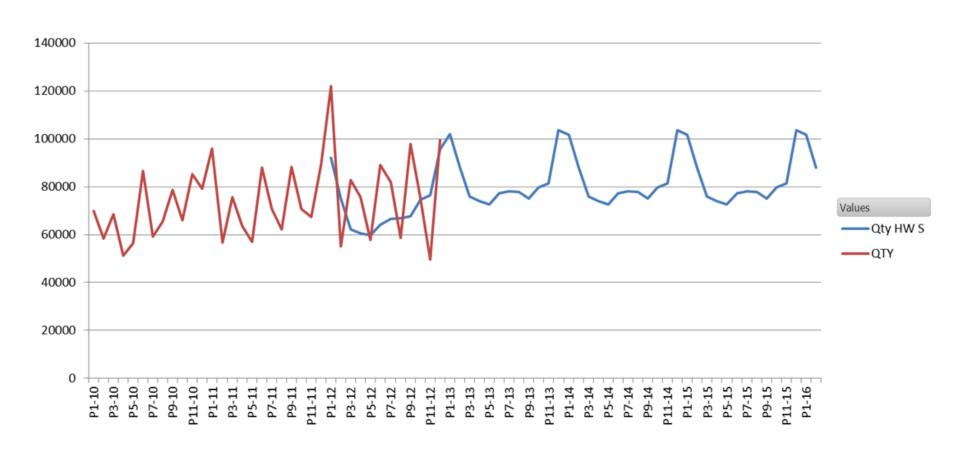





#### **Forecasts Did Not Make Sense**



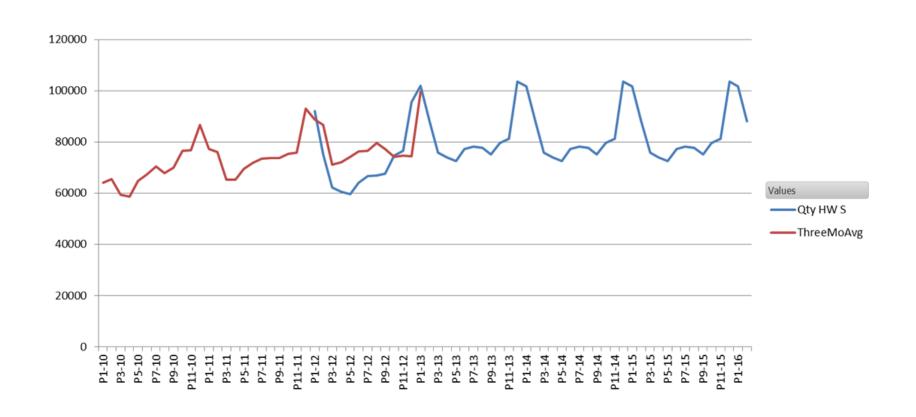



#### **Forecasts Did Not Make Sense**








#### **Holt-Winters Forecast After Fix**







#### Holt-Winters Vs. 3-Mo Moving Avg







#### **Essbase @TREND**

- Includes single, double, and triple exponential smoothing techniques.
- Includes linear and non-linear regression option.
- Does not include an auto-choice function.
- Non-linear regression transforms must be manually applied.
- Many other transform, calculation, and modeling capabilities in Essbase.



- Autoregressive Integrated Moving Average
- Powerful algorithm for series analysis and prediction
- Three parameters (p, d, q)
  - Auto regression (how reliant series values are on previous series values). AR(0) is white noise.
  - Integrated (degree of AR differencing, Random Walk)
  - Moving average (smoothing function)
- ARIMA (1,0,0) = AR(1)
- ARIMA (1,0,1) = ARMA(1,1)
- Large number of potential models (
- Know the name Rob Hyndman for ARIMA in R





# **Stationarity**

- Processes with no growth related to time.
- Random walks are stationary.
- Necessary to difference non-stationary series before applying ARMA models. (ARIMA handles this through the "Integrated" term "d" of the (p,d,q) model parameters.)





# Non-Seasonal ARIMA (p, d, q)

- $\phi(B)(1 B^d)\gamma_t = c + \theta(B)\varepsilon_t$
- $\{\varepsilon_t\}$  is a white noise process with 0 mean and variance  $\sigma^2$ .
- B is a backshift operator
- $\phi(z)$  is a polynomial of order p
- $\theta(z)$  is a polynomial of order q





# Seasonal ARIMA $(p,d,q)(P,D,Q)_m$

- $\Phi(B^m)\phi(B)(1-B^D)(1-B^d)\gamma_t = c + \Theta(B^m)\theta(B)\varepsilon_t$
- $\{\varepsilon_t\}$  is a white noise process with 0 mean and variance  $\sigma^2$ .
- B is a backshift operator
- $\Phi(z)$  is a polynomial of order p
- $\Theta(z)$  is a polynomial of order q





# Forecast() package in R

#### Includes methods:

- ets()
- auto.arima()
- Arima()
- arima()
- HoltWinters()
- StructTS()

#### **Produces**

- the original series;
- point forecasts;
- prediction intervals of specified coverage;
- the forecasting method used and information about the fitted model;
- residuals from the fitted model;
- ône-step forecasts from the fitted model for the period of the observed data.





#### Choosing an ARIMA model

- Auto.arima can be used for model choice.
- Manual model choice requires hypothesis testing and evaluation of results.
- Use minimum AIC to chose best model
  - AIC = -2log(L) + 2(p + q + P + Q + k)
  - Compare AIC values to each other, absolute values carry no meaning





# arima Demo







#### **ARIMA vs. Holt-Winters**

- Holt-Winters can be used for series that are seasonal and have a trend. (require order 2 differencing in ARIMA)
- Model selection can be complex in ARIMA and auto.arima selection may not be well understood.
- ARIMA best for stationary data series.
- ARIMA very powerful, but more to learn.
- Initial values more important in ARIMA (can have a big effect on predictions depending on model selected.)
- ARIMA provides confidence intervals





# **Time Series Functions in OBI 11g**

- Very powerful, accessible capability
- Time dimension must be designated
- Query results must be exact to pull from cache
- Can be "expensive" in processing
- Make sure that unique keys are defined at each level ("Jan13" rather than "Jan")





#### **AGO** function

- Defines a time-based offset
- Can nest multiple AGO statements (same level)
- Ago(<<Measure>>, <<Level>>, <<Number of Periods>>)
- Measure is a fact such as sales.
- Level is an optional term, default is set by the grain of the query (BY clause) or is specified in repository for level based measures.
- Number of periods is an integer specifying the offset value.



- Time-based aggregation function.
- Calculates based on starting value to current.
- Can nest with AGO (same level)
- ToDate(<<Measure>>, <<Level>>)
- Measure is a fact such as sales
- Level is the time grain such as year or month





#### **PERIODROLLING**

- Defines a period of time contextually
- Performs an operation across a specified set of query grain periods
- PeriodRolling(<<Measure>>, <<Starting Period Offset>>, <<Ending Period Offset>>, <<[Hierarchy]>>)
- Measure is a fact such as sales
- Starting Period Offset is an integer value, use a minus sign ("-2" means 2 periods ago)
- Ending Period Offset defines the end of the period, use a zero for current period
- Hierarchy is an optional setting to specify which time hierarchy to use such as "fiscal"
- Use "unbound" for starting period offset to calculate total from beginning
- PeriodRolling uses either the query level grain of "measure" or the measure level for "measure" if it has been set in the Admin tool.





# **Oracle BI Trend Demo**







#### **Oracle Data Mining**

- Oracle Data Mining is an option for the Enterprise Edition of the Oracle Database.
- A collection of APIs and specialized SQL functions.
- Includes a large number of specialized algorithms and built-in procedures.
- Makes use of many built-in capabilities of the Oracle Database
- ODM typically refers to "Oracle Data Mining"





# **Oracle Data Mining Algorithms**

| Problem            | Algorithm                                                                   | Applicability                                                                                                  |
|--------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Classification     | Logistic Regression (GLM) Decision Trees Naïve Bayes Support Vector Machine | Classical statistical technique<br>Popular / Rules / transparency<br>Embedded app<br>Wide / narrow data / text |
| Regression         | Multiple Regression (GLM) Support Vector Machine                            | Classical statistical technique Wide / narrow data / text                                                      |
| Anomaly Detection  | One Class SVM                                                               | Fraud Detection                                                                                                |
| Attribute          | Minimum Description Length (MDL)                                            | Attribute reduction<br>Identify useful data<br>Reduce data noise                                               |
| Association Rules  | Apriori                                                                     | Market basket analysis<br>Link analysis                                                                        |
| Clustering         | Hierarchical K-Means Hierarchical O-Cluster                                 | Product grouping Text mining Gene and protein analysis                                                         |
| Feature Extraction | NMF                                                                         | Text analysis Feature reduction                                                                                |





#### **Classification**

- Prediction model for non-continuous information
  - Binary such as yes/no
  - Limited set (low/medium/high)
- Involves "supervised learning"
  - Prediction directed by a previously known dependent variable or "target" variable.
  - Commonly includes three phases:
    - Training
    - Testing
    - Scoring
- Results in predictive models that are applied to new data sets.
- In our example, we predict which prospects are likely to buy insurance.





# **Oracle Data Mining Demo**







#### **Oracle Test Drive**

- Free to try out Oracle Bl
- Go to <u>www.vlamis.com/testdrive-registration/</u>
- Runs off of Amazon AWS
- Hands-on Labs based on Collaborate 2012 HOLs
- Test Drives for:
  - Oracle BI
  - BI Publisher
  - Microsoft Excel against Oracle OLAP
  - Oracle Data Mining
  - Map Views in OBIEE
- Once sign up, you have private instance for 5 hours
- Available now



