
Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with
OLAPOLAPOLAPOLAPOLAPOLAPOLAPOLAP 11g11g

Collaborate ‘08Collaborate ‘08

Session 211Session 211

Chris Claterbos

claterbos@vlamis.com

Copyright © 2008, Vlamis Software Solutions, Inc

816-729-1034

www.vlamis.com

Vlamis Software Solutions, Inc.Vlamis Software Solutions, Inc.

• Founded in 1992 in Kansas City, Missouri
• Oracle Partner and reseller since 1995
• Specializes in ORACLE-based:

� Data Warehousing
� Business Intelligence

Copyright 2007, Vlamis Software Solutions, Inc.

� Business Intelligence
� Data Transformation (ETL)
� Web development and portals
� Express-based applications

• Delivers
� Design and integrate BI and DW solutions
� Training and mentoring

• Expert presenter at major Oracle conferences

Who I AmWho I Am

• Chris Claterbos, Consulting Manager
� Consulting and Development Manager for Vlamis Softw are Solutions, Inc.

� DBA and applications developer for Oracle products, since 1981.

� Beta tester and early adopter of - including Oracle 8i, 9i, 10g and 11g, JDeveloper
and BIBeans, Oracle AS, Portal , and Reports.

� Speaker and author.

� Previous IOUG Focus Area Manager for Data Warehousi ng and BI

©Vlamis Software Solutions, Inc.2-3

� Previous IOUG Focus Area Manager for Data Warehousi ng and BI

<Insert Picture Here>

Presentation Agenda

• Oracle OLAP Overview

• Enhancing BI Solutions Transparently

•• Delivering Rich Analytics Easily

• Positioning

Oracle Database Strategy for DW
Embedded Analytics

OLAP Statistics

Data MiningSQL Analytics

• Bring the analytics to the data

• Leverage core database
infrastructure

One Cube, Dimensional or SQL Tools
Single version of the truth

OLAP Query

Metadata
Data

Business Rules

Extract, Load

SQL Query

Extract, Load
& Transform (ELT)

Centrally managed data, meta data and business rule s

Oracle OLAP
Leveraging Core Database Infrastructure

• Single RDBMS-MDDS
process

• Single data storage
• Single security model
• Single administration facility

Oracle Database 11 g
Data Warehousing

©Vlamis Software Solutions, Inc.

• Single administration facility
• Grid-enabled
• Accessible by any SQL-

based tool
• Embedded BI metadata
• Connects to all related

Oracle data

Data Warehousing

Warehouse Builder

OLAP

Data Mining

Oracle OLAP Goals

• Improve the delivery of information rich
queries by SQL-based business intelligence
tools and applications
� Embedded business rules

� Fast query performance� Fast query performance

� Simplified access to analytic calculations

� Fast incremental update

� Leverage existing Oracle Database expertise

• A full featured multidimensional
OLAP server
� Excellent query performance for ad-

hoc / unpredictable query

� Enhances the analytic content of
Business intelligence application

� Fast, incremental updates of data

OLAP Option

� Fast, incremental updates of data
sets

� Fully Integrated into RDBMS kernel

• A summary management solution
for SQL based business intelligence
applications
� An alternative to table-based

materialized views, offering
improved query performance and
fast, incremental update

Top OLAP 11g New OLAP
Features

• SQL Query
� SQL cube scan
� SQL cube join
� CUBE_TABLE
� Optimized looping
� System maintained dimension and fact views

• Cube based Materialized Views
• SQL-like calculation expressions
• Cost-based aggregation
• Security

� SQL Grant / Revoke
� Permit with Extensible Data Security and AWM

Top 11g New OLAP Features

• Cube and maintenance scripts
� Declarative calculation rules

� Based on logical model

• All meta data in the Oracle Data Dictionary• All meta data in the Oracle Data Dictionary
� Dimensional Model

� Calculation definitions

� Security policies

� Data source mappings

� SQL representation of model

Cost Based Aggregation
Pinpoint Summary Management

• Improves aggregation
speed and storage
consumption by pre-
computing cells that are
most expense to calculate

• Easy to administer• Easy to administer

• Simplifies SQL queries by
presenting data as fully
calculatedNY

25,000
customers

Los Angeles
35 customers

Precomputed

Computed when queried

Demonstration
BI Tools – how to optimize?

Cube Organized Materialized
Views

• Transparently enhance the query performance of BI
applications
� Data is managed in an Oracle cube

� Fast query
� Fast refresh
� Manage a single cube instead of 10’s, 100’s or � Manage a single cube instead of 10’s, 100’s or

1,000’s of table-based materialized views
� Applications query base / detail relational tables

� Oracle automatically rewrites SQL queries to OLAP
cubes

� Access to summary data in the cube is fully
transparent

Materialized Views
Typical MV Architecture Today

• Query tools access star
schema stored in Oracle
data warehouse

• Most queries at a summary
level

• Summary queries against
star schemas can be SALES

select month, state,
sum(revenue)

from sales, time, customer
group by month, state

CUSTOMER

cust_id

PRODUCT

item_id
subcategory
category
type star schemas can be

expensive to process
day_id
prod_id
cust_id
chan_id
quantity
price
revenue TIME

day_id
month
quarter
year

cust_id
city
state
country

type

CHANNEL

chan_id
class

Materialized Views
Automatic Query Rewrite

• Most DW/BI customers use
Materialized Views (MV)
today to improve summary
query performance

• Define appropriate
summaries based on query
patterns

• Each summary is typically Year, Continent

SALES_MS

month
state
quantiy
revenue

Month, Stateselect month, district,
sum(revenue)

from sales, time, cust
group by month, district

SALES
• Each summary is typically

defined at a particular grain
� Month, State
� Qtr, State, Item
� Month, Continent, Class
� etc.

• The SQL Optimizer
automatically rewrites
queries to access MV’s
whenever possible

SALES_YC

year_id
continent_id
quantity
revenue

day_id
prod_id
cust_id
chan_id
quantity
price
revenue

Materialized Views
Challenges in Ad Hoc Query Environments

• Creating MVs to support ad
hoc query patterns is
challenging

• Users expect excellent
query response time across
any summary

SALES_MCC

month_id
category_id
city_id
quantiy
revenue

Month, City, Category

SALES_YCC

Year, City, Category

SALES_QSI

qtr_id
item_id
state_id
quantiy
revenue

Qtr, State, Item

SALES

SALES_MS

month
state
quantiy
revenue

Month, State

SALES_YC

Year, Continent

any summary
• Potentially many MVs to

manage
• Practical limitations on size

and manageability constrain
the number of materialized
views

SALES_YCC

year_id
category_id
city_id
quantiy
revenue

SALES_YCC

year_id
category_id
continent_id
quantiy
revenue

Year, Continent, Category SALES_XXX

XXX_id
XXX_id
XXX_id
expense_amount
potential_fraud_cost

Cust, Time, Prod, Chan Lvls

SALES_XXX

XXX_id
XXX_id
XXX_id
expense_amount
potential_fraud_cost

SALES_XXX

XXX_id
XXX_id
XXX_id
expense_amount
potential_fraud_cost

SALES_XXX

XXX_id
XXX_id
XXX_id
quantiy
revenue

SALES_YCT

year_id
type_id
continent_id
quantiy
revenue

Year, District

day_id
prod_id
cust_id
chan_id
quantity
revenue

year_id
continent_id
quantity
revenue

Cube-based Materialized Views
Breakthrough Manageability & Performance

SALESCUSTOMER

PRODUCT

item_id
subcategory
category
type

• A single cube provides the
equivalent of thousands of
summary combinations

• The 11g SQL Query
Optimizer treats OLAP day_id

prod_id
cust_id
chan_id
quantity
price
revenue

TIME

day_id
month
quarter
year

cust_id
city
state
country

rewrite
Optimizer treats OLAP
cubes as MV’s and rewrites
queries to access cubes
transparently

• Cube refreshed using
standard MV procedures

CHANNEL

chan_id
class

SALES
CUBErefresh

Cube Organized Materialized Views
Breakthrough Performance

EXPENSE_DETAIL

CATEGORY

item_id
subcategory
category
account

Automatic
Query

Rewrite

• A single cube manages
summaries for all groupings in
the model

• A cube can be represented as
a cube-organized materialized
view

• Oracle automatically rewrites
day_id
item_id
emp_id
expense_amount
potential_fraud_cost

TIME

day_id
week
month
year

ORG

emp_id
office
district
region

• Oracle automatically rewrites
summary queries to the cube

• A singe cube can replace 10’s,
100’s or 1,000’s of materialized
views

Cube Organized Materialized Views
Breakthrough Manageability

EXPENSE_DETAIL

CATEGORY

item_id
subcategory
category
account

• Like 10g MV’s, provides fast
incremental refresh of the
cube as underlying data
changes

• Simple - Cube refresh syntax
is identical to MV Refresh
syntax

day_id
item_id
emp_id
expense_amount
potential_fraud_cost

TIME

day_id
week
month
year

ORG

emp_id
office
district
region

syntax

Materialized View Refresh

dbms_mview.refresh('CB$SALES_CUBE','F')

Performance Case Study
Oracle Applications: Finance DBI

480

300

400

500

600

M
in

ut
es

9
0

100

200

Materialized Views (partially
aggregated*)

OLAP (fully aggregated**)

M
in

ut
es

6 Million
Input Rows

* MV aggregated 1 dimension and 1 measure
** OLAP aggregated 7 dimensions and 11 measures

Cube-Organized Materialized
Views

� A SQL object, just like table-based (heap
organized) materialized views

� The cube -organized MV is similar to a MV on pre -� The cube -organized MV is similar to a MV on pre -
built table

� Summary data is managed by the cube

� The cube MV is meta data only

–Data is not materialized (replicated) into the
cube-organized MV

Implementing Cube MVs
Process

1. Design dimensions and cubes

2. Enable dimension and cube MVs

3. Prepare relational schema for query rewrite

4.4. Build/maintain dimensions and cubes

Implementing Cube MVs
Requirements - Privileges

• Cube owner must have CREATE
MATERIALIZED VIEW privilege

Implementing Cube MVs
Requirements – Design

• Dimensions
� Dimensions must have hierarchies

� Hierarchies must be level based

� Hierarchies must not be skip level or ragged� Hierarchies must not be skip level or ragged

� Dimensions must be fully mapped to star /
snowflake relational tables

� Star tends to be a better choice at the moment

� Dimensions should not be mapped to constants

Implementing Cube MVs
Requirements – Design

• Cubes
� Cube must be Compressed
� Aggregation methods must be

� SUM, MIN or MAX
� The same for all dimensions� The same for all dimensions

� The cube must be fully mapped to sources
� Tables only
� All stored measures
� All dimensions

� Cube is solved by aggregation only
� No models, OLAP DML assignments

Implementing Cube MVs
Requirements – Design

• Compatibility checks lists identify many cube
and dimension design issues

Implementing Cube MVs
Requirements - Query Rewrite

• Cube MV must be enabled
alter materialized view CB$SALES_CUBE" enable query

rewrite;

• Cube and dimension MVs must be fresh
� Stale tolerated is not supported with the cube� Stale tolerated is not supported with the cube

• If the cube’s detail is a summary of the table
alter session set query rewrite integrity = trusted;

Implementing Cube MVs
Requirements - Query Rewrite

• Relational tables must be prepared for query
rewrite with
� NOT NULL constraints on “ID” columns

� Primary key constraints

� Foreign key constraints

� SQL dimension objects

• Relational Schema Advisor can provide
sample SQL script

Implementing Cube MVs
Requirements – MV Refresh

• Same design requirements as MV rewrite

• For Fast refresh (incremental load from fact
tables), MV log tables are required

Implementing Cube MVs
Notes

• Custom measures may be included in a cube used as
an MV
� They will not be included in the MV (because they a re

not in the source tables)

• Any change to the model will cause the MV to • Any change to the model will cause the MV to
become UNUSABLE (not fresh) for MV refresh
� A complete refresh will be required after any chang e in

the model

• The database will lock AW objects from OLAP DML
assignments

Implementing Cube MVs
Database-Generated Objects

• When a cube is enabled as an MV
�Dimensions are automatically enabled as MVs
�The Database generates

� One CR$ table for the cube
– A cube organized table that allows MV refresh to

SQL insert into the cube
� One CB$ materialized view

– Contains MV meta data (e.g., defining query,
Fresh/Stale, etc.)

• Do not delete or modify generated objects
• Do not attempt to create these objects outside of t he

OLAP API (that is, with SQL commands)

Using Cube MVs
MV Refresh of Cube

• Cubes enabled as MVs may be refreshed
using
� dbms_mview.refresh

� dbms_cube.build� dbms_cube.build

� OLAP API

� AWM

• All methods accomplish the same thing – a
MV compatible refresh of the cube

Using Cube MVs
MV Refresh of Cube

• dbms_mview.refresh
� The standard MV refresh program

� Use cube or dimension MV as the refresh
object

� Refresh dimensions and cube separately
(dimensions first)
dbms_mview.refresh(‘CB$TIME’,’C’)
dbms_mview.refresh(‘CB$PRODUCT’,’C’)
dbms_mview.refresh(‘CB$GEOGRAHY’,’C’)
dbms_mview.refresh(‘CB$CHANNEL’,’C’)
dbms_mview.refresh(‘CB$SALES_CUBE’,’F’)

Using Cube MVs
MV Refresh of Cube

• dbms_cube.build
� Cube-specific program that uses the MV refresh

system

� Use logical object names as the build / refresh � Use logical object names as the build / refresh
object

� Build / refresh cubes or dimensions

� Will automatically build / refresh dimensions
of a cube

dbms_cube.build(‘SALES_CUBE’,’F’)

Using Cube MVs
Query Rewrite

• The defining query of the cube MV
determines what queries can be satisfied by
the cube

• The defining query includes the member
columns for all levels, in all dimensionscolumns for all levels, in all dimensions
� The cube MV can satisfy queries for any level of

summarization in the cube when selecting
member columns
� Member columns are the columns dimension

members are mapped to (e.g., in AWM)

Using Cube MVs
Query Rewrite

Member Columns
are included inare included in
the defining
query of the the
Cube MV

Using Cube MVs
Query Rewrite

• Queries that include only those columns that
are included in the defining query of the
cube MV are resolved entirely by the cube
� Aggregates� Aggregates

� Joins

Using Cube MVs
Query Rewrite - Example

SELECT t.calendar_year_id,
p.department_id,
cu.region_id,
ch.class_id,
SUM(f.sales) sales

FROM times t,
products p,
customers cu,customers cu,
channels ch,
sales_fact f

WHERE t.day_id = f.day_id
AND p.item_id = f.item_id
AND cu.customer_id = f.customer_id
AND ch.channel_id = f.channel_id
GROUP BY t.calendar_year_id,
p.department_id,
cu.region_id,
ch.class_id;

Using Cube MVs
Query Rewrite

• Queries that include other (non-member)
columns are solved in part in the SQL
engine
� Queries that have relatively few SQL joins after

the CUBE SCAN are generally goodthe CUBE SCAN are generally good

� Queries that have many SQL joins after the CUBE
SCAN might not be as good

Using Cube MVs
Query Rewrite - Example

SELECT t.calendar_year_id,
t.calendar_year_end_date,
p.department_id,
cu.region_id,
ch.class_id,
SUM(f.sales) sales

FROM times t,
products p,
customers cu,customers cu,
channels ch,
sales_fact f

WHERE t.day_id = f.day_id
AND p.item_id = f.item_id
AND cu.customer_id = f.customer_id
AND ch.channel_id = f.channel_id
GROUP BY t.calendar_year_id,
t.calendar_year_end_date,
p.department_id,
cu.region_id,
ch.class_id

ORDER BY t.calendar_year_end_date;

Using Cube MVs
Query Rewrite - Example

SELECT t.calendar_year_desc,
t.calendar_year_end_date,
p.department_long_desc,
cu.region_desc,
ch.class_desc,
SUM(f.sales) sales

FROM times t,
products p,
customers cu,customers cu,
channels ch,
sales_fact f

WHERE t.day_id = f.day_id
AND p.item_id = f.item_id
AND cu.customer_id = f.customer_id
AND ch.channel_id = f.channel_id
GROUP BY t.calendar_year_desc,
t.calendar_year_end_date,
p.department_long_desc,
cu.region_desc,
ch.class_desc

ORDER BY t.calendar_year_end_date;

Using Cube MVs
Query Rewrite

• Query rewrite will use the highest level in the
cube possible to satisfy GROUP BY on
attribute columns
� If a column representing a level is in a query, tha t

level is selectedlevel is selected
� If dimensions are omitted from the a query, the

highest level in the cube is selected (and SQL
aggregates over those values)

� If attributes of a level are selected for GROUP BY,
that level is selected

Using Cube MVs
Query Rewrite - Example

SELECT t.calendar_year_id,

p.item_marketing_manager,

p.item_buyer,

SUM(f.sales) sales

FROM time_dim t,

product_dim p,

units_fact f

WHERE t.month_id = f.month_id

• This query
• Accesses Calendar Year level

for time
• The top levels for dimensions

not in the query (Customer
and Channel)

WHERE t.month_id = f.month_id

AND p.item_id = f.item_id

GROUP BY t.calendar_year_id,

p.item_marketing_manager,

p.item_buyer;

• Detail (Item) level data for
product

Using Cube MVs
Query Rewrite - Example

F

• This query
• Accesses Calendar Year level

for time
• The top levels for dimensions

not in the query (Customer
and Channel)

• Detail (Item) level data for
product

Using Cube MVs
Query Rewrite - Example

• Levels accessed from cube

GID identifying levels access from cube

Demonstration
Transparently Improving
Performance of BI Solutions

BNP Paribas
Advanced Time-Series Analyses in Real-Time

• Large European financial
institution

• Used by traders to help
decrease susceptibility to
market volatility

• Replacing FAME Time Series
DatabaseDatabase
� Forecasting, Analysis and

Modeling Environment

• Three billion stored facts on
RAC

• Data updated every 2 seconds –
processing approximately 1m
records daily

• SQL-based custom application
used by 1500 concurrent users

One Cube Accessed Many Ways…

• One cube can be used as
� A summary management solution to SQL-based

business intelligence applications as cube-
organized materialized views

� A analytically rich data source to SQL-based
business intelligence applications as SQL cube -business intelligence applications as SQL cube -
views

� A full-featured multidimensional cube, servicing
dimensionally oriented business intelligence
applications

Cube Represented as Star Model
Simplifies Access to Analytic Calculations

• Cube represented as a
star schema

• Single cube view
presents data as
completely calculated
� Analytic calculations

presented as columns

SALES_CUBEVIEW

day_id
prod_id

CUSTOMER_VIEW

cust_id
city
state
region

PRODUCT_VIEW

prod_id
subcategory
category
group

CHANNEL_VIEW

chan_id

presented as columns

� Includes all summaries

• Automatically managed
by OLAP

prod_id
cust_id
chan_id
sales
profit
profit_yrago
profit_share_parentTIME_VIEW

day_id
quarter
month
year

chan_id
class
total

SALES
CUBE

Empowering Any SQL-Based Tool
Leveraging the OLAP Calculation Engine

SELECT cu.long_description customer,
f.profit_rank_cust_sh_parent,
f.profit_share_cust_sh_parent,
f.profit_rank_cust_sh_level,
f.profit,
f.gross_margin

FROM time_calendar_view t,
product_primary_view p,

Application Express on Oracle OLAP

product_primary_view p,
customer_shipments_view cu,
channel_primary_view ch,
units_cube_view f

WHERE t.level_name = 'CALENDAR_YEAR‘
AND t.calendar_year = 'CY2006‘
AND p.dim_key = 'TOTAL‘
AND cu.parent = 'TOTAL‘
AND ch.dim_key = 'TOTAL‘
AND t.dim_key = f.TIME
AND p.dim_key = f.product
AND cu.dim_key = f.customer
AND ch.dim_key = f.channel;

Oracle OLAP 11g Summary

• Improve the delivery of information rich
queries by SQL-based business intelligence
tools and applications
� Fast query performance

� Simplified access to analytic calculations

� Fast incremental update

� Centrally managed by the Oracle Database

For More Information

• www.vlamis.com

• Oracle Technology Network:
� http://www.oracle.com/technology/products/bi/ol

ap/index.html

• Product Discussion Forum:
� http://forums.oracle.com/forums/forum.jspa?forumID=

16

QUESTIONS?QUESTIONS?

©Vlamis Software Solutions, Inc.2-54

Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with Accelerate Your Oracle DW with
OLAPOLAPOLAPOLAPOLAPOLAPOLAPOLAP 11g11g

Collaborate ‘08Collaborate ‘08

Session 211Session 211

Chris Claterbos

claterbos@vlamis.com

Copyright © 2008, Vlamis Software Solutions, Inc

816-729-1034

www.vlamis.com

