
Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

OORRAACCLLEE’’SS SSQQLL AANNAALLYYTTIICC FFUUNNCCTTIIOONNSS IINN 88i AANNDD 99i

David L. Fuston, dfuston@vlamis.com
Vlamis Software Solutions, Inc., www.vlamis.com

INTRODUCTION

The SQL language has traditionally provided little support for business intelligence processing. Many aggregation
tasks and business intelligence calculations such as subtotals, moving averages, rankings and lead/lag comparisons
were cumbersome at best prior to Oracle 8i.

ANSWERING BUSINESS QUESTIONS

The challenge is in deriving answers to business questions from the available data, so that decision makers at all levels
can quickly respond to changes in the business climate. While a standard transactional query might ask, “When did
order 84305 ship?” an analytical query might ask, “How do sales in the Southwestern region for this month compare
with plan? Or with sales a year ago?” The first question involves simple data selection and retrieval. However, the
second question involves inter-row calculations, time series analysis, and access to aggregated historical and current
data. This is online analytical processing — OLAP. The data processing required to answer analytical questions is
fundamentally different from the data processing required to answer transactional questions. The following table
highlights the major differences.

Characteristic Transactional Query Analytical Query
Typical operation Update Analyze
Age of data Current Historical
Level of data Detail Aggregate
Data required per query Minimal Extensive
Querying pattern Individual queries Iterative queries

TRANSFORMING TABLES INTO MULTIDIMENSIONAL DATA STRUCTURES

DIFFERENCES IN DATA MODELS

When an OLAP application runs, OLAP Services fetches the required data from an Oracle9i database into a
temporary cache. Within this cache, the data is stored in multidimensional data objects. For the data to be fetched

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

correctly, you must identify which columns will be fetched and what role they will play. The basic data model in a
relational database is a table composed of one or more columns of data. All of the data is stored in columns. In
contrast, the basic data model in a multidimensional cache is a cube, which is composed of measures, dimensions,
and attributes. Once you determine that you will want to access a particular column through OLAP Services, you
must identify whether the data from that column will function in it as a measure, a dimension, or an attribute. You
also
identify which columns are keys. These decisions are stored as metadata and constraints.

TYPES OF DATA STRUCTURES

Your Oracle RDBMS and OLAP Services use different data structures, as shown in the following table. Note that
even though both use dimensions, their implementations are different.

Oracle RDBMS & Data Warehouse OLAP Services
Tables Levels
Materialized Views Attributes
Dimensions Dimensions
 Measures

 Cubes

IDENTIFYING YOUR DATA REQUIREMENTS

Before you can begin mapping columns to multidimensional structures, you must know what data users want to view
and at what levels they want to view it. If you have already created a data warehouse, you have already done most of
this research. You only need to verify that the requirements haven’t changed for the analytical applications that will be
run using OLAP Services. You can use Oracle Enterprise Manager to explore the existing schemas. Then make a
note of the columns that you are going to use and the types of multidimensional objects you want to define them as:
measures, dimensions, or attributes. Keep in mind that the OLAP API only has access to objects in the database
through the metadata definitions. Thus, if an object (such as a column in a table) has not been defined in the metadata,
it is not available to OLAP applications.

MEASURES

Measures are the same as facts. The term “fact” is typically used in relational databases, and the term “measure” is
typically used in multidimensional applications. You will encounter both terms in Oracle Enterprise Manager, since the
creation of metadata is the process of associating relational objects with their multidimensional counterparts.
Measures are thus located in fact tables. A fact table typically has two types of columns: measures (or facts) and
foreign keys to dimension tables. Measures contain the data that you wish to analyze, such as Sales or Cost. Oracle

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

Enterprise Manager requires that a column have a numerical or date data type to be identified as a measure. Most
frequently, a measure is numerical and additive. One or more columns in the dimension tables form constraints on
the fact tables. Foreign keys in the fact tables define these constraints, by the metadata, or both.

DIMENSIONS

Dimensions identify and categorize your data. Dimension members are stored in a dimension table. Each column
represents a particular level in a hierarchy. In a star schema, the columns are all in the same table; in a snowflake
schema, the columns are in separate tables for each level. Because measures are typically multidimensional, a single
value in a measure must be qualified by a member of each dimension to be meaningful. For example, Sales
measure might have dimensions for Product, Geographic Area, and Time. A value in the Sales measure (37854) is
only meaningful when it is qualified by a product (DVD Player), a geographic area (Southwest), and Time (March
2001). Defining a dimension in your data warehouse creates a database dimension object, in addition to creating
metadata. A dimension object contains the details of the parent-child relationship between columns in a dimension
table; it does not contain data. The database dimension object is used by the Summary Advisor and query rewrite to
optimize your data warehouse. However, in the OLAP API, a dimension does contain data, such as the names of
individual products, geographic areas, and time periods. The OLAP API uses the metadata, dimension objects, and
dimension tables to construct its dimensions.

LEVELS

Dimensions are structured hierarchically so that data at different levels of aggregation can be manipulated together
efficiently for analysis and display. Each dimension must have at least one level. Each level represents a position in the
hierarchy. Levels group the data for aggregation and are used internally for computation. For example, in a Time
dimension hierarchy, you might group weeks into quarters into years. Week, Quarter, and Year are the levels of your
Time dimension. If data for the Sales measure is stored in weeks, then the higher levels of the Time dimension allow
the Sales data to be aggregated correctly into quarters and years. The members of a hierarchy at different levels have
a parent-child relationship. For example, “QTR1” is the child of “YR2001,” thus “YR2001” is the parent of “QTR1.”
The dimension members at the lowest level of a hierarchy often are used as a foreign key in a fact table. All levels of a
dimension are stored in dimension tables.

ATTRIBUTES

Attributes provide supplementary information about the dimension members at a particular level. Attributes are often
used for display, since the dimension members themselves may be meaningless, such as a value of “T2965” for a time
period. For example, you might have columns for employee number (ENUM), last name (LAST_NAME), first
name (FIRST_NAME), and telephone extension (TELNO). ENUM is the best choice for a level, since its values
uniquely identify employees while the other columns may not. ENUM also has a NUMBER data type, which makes
it more efficient than a text column. LAST_NAME, FIRST_NAME, and TELNO are attributes. Even though they
are dimensioned by ENUM, they do not make suitable measures because they are descriptive text rather than
business measurements. Attributes are associated with a particular level of a dimension hierarchy and must be stored
in the same table as that level.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

RECENT CHANGES IN SQL

The recent releases of Oracle have addressed both the differences in data models and types of data structures by
significantly enhancing SQL for business intelligence processing:

• Oracle8i Release 1 added support for the CUBE and ROLLUP extensions to the SELECT statement’s GROUP
BY clause. These extensions enable more efficient and convenient aggregations, a key part of data warehousing
and business intelligence processing.

• Oracle8i Release 2 introduced a powerful new set of SQL analytic functions to address essential business
intelligence calculations. The analytic functions provide enhanced performance and higher developer productivity
for many calculations. In addition, the functions are being considered for incorporation into the ANSI SQL:
1999 standard.

• Oracle8i Release 8.2 adds powerful new families of analytic functions and important extensions for the GROUP
BY clause.

ANALYTIC FUNCTIONS

Oracle provides 8 families of analytic functions, 3 of which are new in Release 8.2. Here is a brief description of each
family listing the specific functions:

• Ranking family - This family supports business questions like “show the top 10 and bottom 10 salesperson per
region” or “show, for each region, salespersons that make 25% of the sales”. Oracle provides RANK,
DENSE_RANK, PERCENT_RANK, CUME_DIST and NTILE functions.

• Window Aggregate family - This family addresses questions like “What is the 13-week moving average of a stock
price?” or “What was the cumulative sum of sales per each region?” The new features provide moving and
cumulative processing for all the SQL aggregate functions including AVG, SUM, MIN, MAX, COUNT,
VARIANCE and STDDEV.

• Reporting Aggregate family - One of the most common types of calculations is the comparison of values at
different levels of aggregation. For instance, we might want to know regional sales levels as a percent of national
sales. All percent-of-total and market share calculations require this processing. The reporting aggregate family
makes these sort of calculations simple: it lets one row contain values calculated at different aggregation levels.
The new family provides reporting aggregate processing for all SQL aggregate functions including AVG, SUM,
MIN, MAX, COUNT, VARIANCE and STDDEV.

• LAG/LEAD family - Studying change and variation is at the heart of analysis. Necessarily, this involves
comparing the values of different rows in a table. While this has been possible in SQL, usually through self-joins,
it has not been efficient or easy to formulate. The LAG/LEAD family enables queries to compare different
rows of a table simply by specifying an offset from the current row.

• Linear Regression family - Oracle provides functions for linear regression calculations, including slope, intercept,
correlation coefficient and many other key values.

• Inverse Percentile family - Added in Release 8.2, these functions allow queries to find the data, which corresponds
to a specified percentile value. For instance, users may find the median value of a data set by querying
PERCENTILE_DISC(0.5).

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

• Hypothetical Rank and Distribution family - These functions, new in Release 8.2, allow queries to find what rank
or percentile value a hypothetical data value would have if it were added to an existing data set.

• FIRST/LAST Aggregates family - A Release 8.2 enhancement, this family enables queries to return the first or last
value of a sorted aggregate group.

Note that the analytic functions are intended to supplement the power of the relational database platform for
decision support processing: they are not intended to supplant the role of specialized OLAP environments. Any
OLAP product, such as Oracle Express, can leverage the power of the analytic functions to enhance its query
performance.

BENEFITS

The analytic functions enhance both database performance and developer productivity. They are valuable for all
types of processing, ranging from interactive decision support to batch report jobs. Corporate developers and
independent software vendors alike will be able to take advantage of the features. Here are key benefits provided by
the new functions:

• Improved Query Speed - The processing optimizations supported by these functions enable significantly better query

performance. An action which before required self-joins or complex procedural processing may now be
performed with far fewer table scans in native SQL. The performance enhancements enabled by the new
functions enhance query speeds for Oracle’s Express system and other ROLAP products.

• Enhanced Developer Productivity - The functions enable developers to perform complex analyses with much clearer
and more concise SQL code. Tasks, which in the past required multiple SQL statements or the use of Express
procedural languages, can now be expressed using single SQL statements. The new SQL is quicker to formulate
and maintain than the older approaches, resulting in greater productivity.

• Minimized Learning Effort - Through careful syntax design, the analytic functions minimize the need to learn new
keywords. The syntax leverages existing aggregate functions, such as SUM and AVG, so that these well-
understood keywords can be used in extended ways.

• Standardized Syntax - As part of the ANSI SQL standard, the new functions are attractive for independent
software vendors: vendors will have an incentive to adjust their products to take advantage of the new functions.

ANALYTIC FUNCTION CONCEPTS

To perform their operations, the analytic functions add several new elements to SQL processing. These elements
build on existing SQL to allow flexible and powerful calculation expressions. Here are the essential concepts used in
the analytic functions:

• Processing Order - Query processing using analytic functions takes place in three stages. All joins, WHERE,

GROUP BY and HAVING clauses are performed first. Second, the result set is made available to the analytic
functions, and all their calculations take place. Third, if the query has an ORDER BY clause at its end, the
ORDER BY is processed to allow for precise output ordering. The processing order is shown below.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

• Result Set Partitions - The analytic functions allow users to divide query result sets into ordered groups of rows

called partitions. Note that the term "partitions" used with analytic functions is unrelated to Oracle's table
partitions feature. Throughout this paper, we use "partitions" only in the meaning related to analytic functions.
Partitions are created after the groups defined with GROUP BY clauses, so any aggregate results such as SUM's
and AVG's are available to them. Partition divisions may be based upon any desired columns or expression. A
query result set may have just one partition holding all the rows, a few large partitions, or many small partitions
holding just a few rows each.

• Window - For each partition, a sliding window of data may be defined. The window determines the range of
rows used to perform the calculations for the "current row" (defined in the next bullet). Window sizes can be
based on either a physical number of rows or a logical interval such as time. The window has a starting row and
an ending row. Depending on its definition, the window may move at one or both ends. For instance, a
window defined for a cumulative sum function would have its starting row fixed at the first row of its partition,
and its ending row would slide from the starting point all the way to the last row of the partition. In contrast, a
window defined for a moving average would have both its starting and end points slide so that they maintained a
constant physical or logical range.

A window can be set as large as all the rows in a partition. At the other extreme, it could be just a single row.
Users may specify a window containing a constant number of rows, or a window containing all rows where a
column value is in a specified numeric range. Windows may also be defined to hold all rows where a date value
falls within a certain time period, such as the prior month.

• Current Row - Each calculation performed with an analytic function is based on a current row within a window.
The current row serves as the reference point determining the start and end of the window. For instance, a
centered moving average calculation could be defined with a window that holds the current row, the 5 preceding
rows and the 6 rows ahead of it. This would create a sliding window of 12 rows, as shown below.

joins,
WHERE,

 GROUP BY,
& HAVING

clauses

Partitions created;
Analytic functions

applied to each row
in each partition

Final
ORDER

BY

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

RELEASE 8.2 ANALYTIC FUNCTIONS - FEATURES AND EXAMPLES

This section describes the key features of the analytic functions introduced in Release 8.2 and provides basic examples.
However, it does offer practical cases to show the value of the new functions.
In the query below I used three queries (union-ed together). The first query provides the department-job totals; the
second, the department totals; and the third, the grand total.

P a r t i t i o n s t a r t

P a r t i t i o n f i n i s h

C u r r e n t r o w : c a l c u l a t i o n s b a s e d o n w i n d o w c o n t e n t s

W i n d o w s t a r t

W i n d o w f i n i s h

D i r e c t i o n o f
w i n d o w m o v e m e n t

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL> -- Here is the pure SQL way with accesses to the employee table
SQL>
SQL> SELECT deptno, job, SUM(sal) sal ß Provides the dept-job totals
 2 FROM emp
 3 GROUP BY deptno, job
 4 UNION
 5 SELECT deptno, NULL job, SUM(sal) sal ß Provides the dept sub totals
 6 FROM emp
 7 GROUP BY deptno
 8 UNION
 9 SELECT TO_NUMBER(NULL) deptno, NULL job, SUM(sal) sal ß The grand total
 10 FROM emp
 11 ORDER BY deptno, job;

 DEPTNO JOB SAL
----------- --------- ---------
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 10 8750
 20 ANALYST 6000
 20 CLERK 1900
 20 MANAGER 2975
 20 10875
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600
 30 9400
 29025

13 rows selected.

Now in Oracle 8i we can accomplish the same thing using a ROLLUP. A ROLLUP is an extension to the GROUP
BY clause used to calculate and return subtotals and a grand total as additional rows of the query efficiently. These
additional rows are the rows that were created by the two extra UNION SELECT statement in the above traditional
SQL solution; however, the new ROLLUP operation can create these rows with only one table access versus the
above example, which accessed the table three separate times.
A ROLLUP produces progressive subtotals for each column in the ROLLUP operation moving right to left. Again,
in our example, ROLLUP will produce a subtotal for each job within a department, a subtotal for each department,
and a grand total for all departments. Notice how simple the syntax is using the ROLLUP operation.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL>
SQL> -- Here is the new way using ROLLUP and a single table access
SQL>
SQL> SELECT deptno, job, SUM(sal) sal
 2 FROM emp
 3 GROUP BY ROLLUP(deptno, job);

 DEPTNO JOB SAL
----------- --------- ---------
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 10 8750
 20 ANALYST 6000
 20 CLERK 1900
 20 MANAGER 2975
 20 10875
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600
 30 9400
 29025

13 rows selected.

Although ROLLUPs can be achieved using client side tools such as SQL*Plus that calculate these subtotals on the
client, these tools can place a significant load on the client machine.
But what happens when one of the columns that you are aggregating on allows a NULL value? The question then
becomes “is the NULL column row returned a subtotal row or a normal group row?” Consider the following query
output.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL> -- But what if someone isn't assigned a JOB or Dept? Confusing NULLS!
SQL>
SQL> SELECT deptno, job, SUM(sal) sal
 2 FROM emp
 3 GROUP BY ROLLUP(deptno, job);

 DEPTNO JOB SAL
----------- --------- ---------
 10 CLERK 1300
 10 MANAGER 2450
 10 3750
 20 ANALYST 6000
 20 CLERK 1900
 20 MANAGER 2975
 20 10875
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 4350
 30 1250 ß Is this a subtotal?
 30 9400 ß What about this row?
 PRESIDENT 5000
 5000
 29025

15 rows selected.

In order to help our programs and us distinguish what rows are subtotals, Oracle created the GROUPING function.
GROUPING returns the value “1” if the row is a subtotal or grand total row created by the ROLLUP operator and
returns a “0” if it is a normal row returned by the query.
Consider the example below using the GROUPING function. Notice that I used the traditional DECODE syntax
to determine the job subtotals, and the new Oracle 8i CASE syntax to determine the department subtotals. While the
DECODE statement uses only repetitive equality checks, the CASE statement allows all comparison operators plus
the ability to use ANDs, ORs, etc. in a single test. Anyway, on with our example of ROLLUPs.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL>
SQL> -- Use GROUPING Function. Example uses new 8i CASE function
SQL> -- and traditional old DECODE function
SQL>
SQL> SELECT
 2 CASE WHEN GROUPING(deptno) = 1
 3 THEN 'All Depts'
 4 WHEN (GROUPING(deptno) = 0 AND deptno IS NULL)
 5 THEN 'No Dept'
 6 ELSE TO_CHAR(deptno) END AS deptno,
 7 DECODE(GROUPING(job),
 8 1, 'All Jobs',
 9 0, NVL(job,'No Job')) AS job,
 10 SUM(sal) sal
 11 FROM
 12 emp
 13 GROUP BY
 14 ROLLUP(deptno,job);

DEPTNO JOB SAL
---------- --------- ---------
10 CLERK 1300
10 MANAGER 2450
10 All Jobs 3750
20 ANALYST 6000
20 CLERK 1900
20 MANAGER 2975
20 All Jobs 10875
30 CLERK 950
30 MANAGER 2850
30 SALESMAN 4350
30 No Job 1250
30 All Jobs 9400
No Dept PRESIDENT 5000
No Dept All Jobs 5000
All Depts All Jobs 29025

15 rows selected.

But what if you wanted to get subtotals not only for each department and job within department, but also for each
job (across departments)? The CUBE operator works similar to the ROLLUP operator, but creates subtotals for all
possible combinations of the columns contained in the CUBE list. CUBE is particularly helpful when your dimensions
are not part of the same hierarchy (i.e. week, month, and year). Note, however, that ROLLUPs and CUBEs are
independent of any hierarchy meta-data stored in dictionary.
Subtotals created by CUBE would be synonymous with those created for a cross-tab or matrix type report. Here is
the example using CUBE. I’ll leave the traditional SQL solution for you to do.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL>
SQL> -- Example using CUBE
SQL>
SQL> SELECT deptno, job, SUM(sal) sal
 2 FROM emp
 3 GROUP BY CUBE(deptno, job);

 DEPTNO JOB SAL
---------- --------- ---------
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 10 8750
 20 ANALYST 6000
 20 CLERK 1900
 20 MANAGER 2975
 20 10875
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 5600
 30 9400
 ANALYST 6000
 CLERK 4150
 MANAGER 8275
 PRESIDENT 5000
 SALESMAN 5600
 29025

18 rows selected.

The extra rows created by the ROLLUP and CUBE statements are created during the GROUP BY operation and
therefore the HAVING clause can be used with the GROUPING function to filter results to include or exclude certain
subtotals, or to include only the subtotal rows. In addition, since the ORDER BY is the last operation performed, the
subtotal and grand total lines are sorted among the rest of the rows returned by the query.
Here is an example of a query that retrieves only the extra subtotal and grand total rows created by the CUBE
statement.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL>
SQL> -- And if we only wanted the subtotal and grand total lines
SQL>
SQL> SELECT
 2 DECODE(GROUPING(deptno),1,'All Depts',deptno) deptno,
 3 DECODE(GROUPING(job),1,'All Jobs',job) job,
 4 SUM(sal) sal
 5 FROM
 6 emp
 7 GROUP BY
 8 CUBE(deptno, job)
 9 HAVING
 10 GROUPING(deptno) = 1 OR GROUPING(job) = 1;

DEPTNO JOB SAL
---------- --------- ---------
10 All Jobs 8750
20 All Jobs 10875
30 All Jobs 9400
All Depts ANALYST 6000
All Depts CLERK 4150
All Depts MANAGER 8275
All Depts PRESIDENT 5000
All Depts SALESMAN 5600
All Depts All Jobs 29025

9 rows selected.

In all of our examples I have used the SUM function. While it is probably the most common, you can use other
functions such as COUNT, AVG, MIN, MAX, etc.

ANALYTIC FUNCTIONS
Just beyond ROLLUP and CUBE are some new functions for determining how a given row ranks or compares to
other rows in the set. Continuing on, suppose that our favorite user wants a report that shows a list of employee
names, their salary, and a ranking based on their salary. Oracle 8i provides the RANK function to calculate such
information. The syntax looks a little strange, but it’s easy to understand. Before we begin, we need to discuss how
NULLs are ranked within Oracle. Oracle treats NULLs as the largest value by default. The new ranking functions,
however, give us the choice of placing NULLs at either the top or the bottom of the list.
Here is the example using RANK twice; once with NULLs at the top and once with NULLs at the bottom. Again, I will
leave the pure SQL solution for you to do (no beginner task, mind you).

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL>
SQL> -- Rank example
SQL>
SQL> SELECT ename, sal,
 2 RANK() OVER (ORDER BY sal DESC NULLS LAST) AS null_rank_last,
 3 RANK() OVER (ORDER BY sal DESC NULLS FIRST) AS null_rank_first
 4 FROM emp;

ENAME SAL NULL_RANK_LAST NULL_RANK_FIRST
---------- --------- -------------- ---------------
KING 14 1
JONES 3000 1 2
SCOTT 3000 1 2
FORD 3000 1 2
BLAKE 2850 4 5
CLARK 2450 5 6
ALLEN 1600 6 7
TURNER 1500 7 8
MILLER 1300 8 9
WARD 1250 9 10
MARTIN 1250 9 10
ADAMS 1100 11 12
JAMES 950 12 13
SMITH 800 13 14

14 rows selected.

Investigating the last column “null rank first”, you notice that three people are tied for second and the next person has
the place of fifth. If you wanted to not skip any numbers after a tie, use the DENSE_RANK function (example below).
Now suppose that we wanted to also provide a ranking of salaries within each department. To accomplish this task
use the PARTITION BY clause followed by a list of columns (separated by commas). The PARTITION BY clause is
totally unrelated and independent of Oracle 8’s table partition feature, etc. The PARTITION BY clause breaks the
data into numerous datasets for analytic functions to perform its’ calculations.

SQL>
SQL> -- Rank within department example (No skipping numbers i.e. DENSE)
SQL>
SQL> SELECT deptno, ename, sal,
 2 DENSE_RANK() OVER (ORDER BY sal DESC) AS overall_rank,
 3 DENSE_RANK() OVER (PARTITION BY deptno
 4 ORDER BY sal DESC) AS dept_rank
 5 FROM emp
 6 ORDER BY deptno, sal DESC;

 DEPTNO ENAME SAL OVERALL_RANK DEPT_RANK
----------- ---------- --------- ------------ ---------
 10 KING 5000 1 1
 10 CLARK 2450 4 2
 10 MILLER 1300 7 3

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

 20 JONES 3000 2 1
 20 FORD 3000 2 1
 20 SCOTT 3000 2 1
 20 ADAMS 1100 9 2
 20 SMITH 800 11 3
 30 BLAKE 2850 3 1
 30 ALLEN 1600 5 2
 30 TURNER 1500 6 3
 30 WARD 1250 8 4
 30 MARTIN 1250 8 4
 30 JAMES 950 10 5

14 rows selected.

Suppose further that we want to calculate the percent of the departments’ total salary each person receives. This
calculation is performed by the RATIO_TO_REPORT function. Using the PARTITION BY clause causes the
RATIO_TO_REPORT function to provide the ratio of the partition instead of the whole report.

SQL>
SQL> -- Want to see what percentage of payroll each person is in their dept?
SQL>
SQL> SELECT
 2 deptno, ename, sal,
 3 RATIO_TO_REPORT(sal)
 4 OVER (PARTITION BY deptno) AS pct_of_dept
 5 FROM
 6 emp
 7 ORDER BY
 8 deptno, sal DESC;

 DEPTNO ENAME SAL PCT_OF_DEPT
----------- ---------- --------- -----------
 10 KING 5000 .57
 10 CLARK 2450 .28
 10 MILLER 1300 .15
 20 JONES 3000 .28
 20 SCOTT 3000 .28
 20 FORD 3000 .28
 20 ADAMS 1100 .10
 20 SMITH 800 .07
 30 BLAKE 2850 .30
 30 ALLEN 1600 .17
 30 TURNER 1500 .16
 30 WARD 1250 .13
 30 MARTIN 1250 .13
 30 JAMES 950 .10

14 rows selected.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

As with ROLLUP and CUBE, the rows may be sorted when calculating the analytic function value, but that does not
guarantee that the final results will be in the same order. Always use an ORDER BY clause to sort the rows as you
desire. You can also use a window to define a range (or moving range) of rows that are used to perform the analytic
function calculation. With windows you can, therefore, calculate running totals, moving averages, etc.

IN-LINE VIEWS AND TOP-N STATEMENTS

In-Line views is a sub query that you place entirely in the FROM clause and that you give an alias. Any column that you
list in the SELECT column list in the sub query, you can use in the parent or encapsulating query. In-line views in
Oracle previous to version 8i allowed us to avoid creating unnecessary view schema objects.
With Oracle 8i, in-line views now allow ordering. Since you can use an order by clause in an in-line view it is now
possible with Oracle 8i to find the top or bottom few rows of a table easily and efficiently. These queries are
referred to as Top-N or Bottom-N queries.
Examine the query below, which uses both an in-line view and a ROWNUM predicate.

SQL>
SQL> -- Top-N example - get top two salary earners; notice ties are split
SQL>
SQL> SELECT *
 2 FROM (SELECT ename, sal
 3 FROM emp
 4 ORDER BY sal DESC) emp
 5 WHERE rownum < 3;

ENAME SAL
---------- ---------
KING 5000
JONES 3000

Remember that if the ORDER BY clause was moved from the subquery (in-line view) to the top level query, there
would be no guarantee that the top rows would be returned since Oracle sorts the rows after the row numbers are
assigned. The ORDER BY in the in-line view, however, is executed before the rows are assigned a row number; and
therefore, we are guaranteed to get the largest rows.
This query also executes quicker in Oracle 8i as compared to the traditional method used in prior versions. This
increase is due to the fact that Oracle recognizes that only three rows are desired so it holds only the three biggest
rows fetched so far in memory rather than sorting the entire table. When a bigger row is read, it discards the smaller
row and that row is no longer considered or sorted any further.

Designing, Developing and Deploying Applications

Paper #278

Copyright  2001 Vlamis Software Solutions, Inc. Permission granted for use as long as credit is given to the author and this copyright
notice is intact.

SQL>
SQL> -- And to get the top 2 salary earners in each group - ties not split
SQL>
SQL> SELECT deptno, ename, sal
 2 FROM (SELECT deptno, ename, sal,
 3 RANK() OVER (PARTITION BY deptno
 4 ORDER BY sal DESC) AS dept_rank
 5 FROM emp) emp
 6 WHERE dept_rank < 3;

 DEPTNO ENAME SAL
----------- ---------- ---------
 10 KING 5000
 10 CLARK 2450
 20 JONES 3000
 20 SCOTT 3000
 20 FORD 3000
 30 BLAKE 2850
 30 ALLEN 1600

7 rows selected.

CONCLUSION

With the introduction of analytic functions, Oracle solved many problems of using SQL in business intelligence tasks.
The added analytic functions of Oracle8i Release 8.2 enable faster query performance and greater developer
productivity for even more calculations. The value of analytic functions has already been recognized, and major
business intelligence tool vendors are using them in their products. The power of the analytic functions, combined
with their status as international SQL standards, make them an important tool for all SQL users.

Footnote: As of the writing of this paper, Oracle 9i beta was still in development and not yet released to a select group
of beta testers and developers. By the time of the IOUG-A Live! 2001 conference, 9i analytic functions will be
summarized in the MS PowerPoint presentation.

Footnote: For information on the analytic functions introduced in earlier release, Oracle8i Release 2, please see the
technical white paper “Analytic Functions for Oracle8i,” available at the URL
http://technet.oracle.com/products/oracle8i/ on the Oracle Technology Network.

Oracle’s SQL Analytic Oracle’s SQL Analytic
Functions in 8i and 9iFunctions in 8i and 9i

Presentation #278Presentation #278

IOUG-A Live! 2001

Presented by:

David Fuston

Vlamis Software Solutions, Inc.
(816) 781-2880

dfuston@vlamis.com

http://www.vlamis.com

Copyright © 2001 Vlamis Software Solutions, Inc.

Vlamis Software Solutions, Inc.

Vlamis Software Solutions, Inc.Vlamis Software Solutions, Inc.

• Founded in 1992 in Kansas City, Missouri

• A Member of Oracle Partner Program since 1995 along
with various Oracle Beta Programs, including 9i

• Designs and implements databases/data marts/data
warehouses using RDBMS and Multidimensional tools

• Specializes in Data Transformation, Data
Warehousing, Business Intelligence, Oracle Financials
and Applications Development

• Founder Dan Vlamis is former developer at Oracle-
Waltham office for Sales Analyzer Application

• Oracle Certified Solutions Provider

Vlamis Software Solutions, Inc.

AgendaAgenda

• Answering Business Questions

• Transforming Tables into Multidimensional Data
Structures

• Recent Changes in SQL

• Analytic Functions and Families

• Analytic Functions - Features and Examples

• New in 9i

• Summary

Vlamis Software Solutions, Inc.

Answering Business QuestionsAnswering Business Questions

• Standard transactional
query might ask, “When
did order 84305 ship?”

• The transactional query
involves simple data
selection and retrieval.

• An analytical query might
ask, “How do sales in the
Southwestern region for
this month compare with
plan? Or with sales a year
ago?”

• The analytical query
involves inter-row
calculations, time series
analysis, and access to
aggregated historical and
current data.

Transactional Query versus Transactional Query versus
Analytical QueryAnalytical Query

Iterative

Queries

Individual

QueriesQuerying Pattern

ExtensiveMinimal

Data Required per
Query

AggregateDetailLevel of Data

Historical, current

& projectedCurrentAge of Data

AnalyzeUpdateTypical Operation

Analytical

Query

Transactional

QueryCharacteristic

Types of Data StructuresTypes of Data Structures

Cubes

Measures

DimensionsDimensions

AttributesMaterialized Views

LevelsTables

Advanced Analytic
Services

Oracle RDBMS and
Data Warehouse

Vlamis Software Solutions, Inc.

Metadata Definitions and ObjectsMetadata Definitions and Objects

• Measures (Multi-dimensional) = Facts (relational)
– Sales units or dollars, unit cost

• Dimensions = identify and categorize data
– Product, Geography, Time, Sales Channel

• Level = position in hierarchy of a dimension
– Week rolls into Quarter, which rolls into Year

• Attributes = supplementary info about a dimension
member

– Color, telephone number, size, shape, weight

Vlamis Software Solutions, Inc.

Analytic Function FamiliesAnalytic Function Families

• Ranking family - RANK, DENSE_RANK, PERCENT_RANK,
CUME_DIST, ROW_NUMBER, and NTILE functions.

• Moving Aggregate family - SUM, AVG, MIN, MAX, COUNT,
VARIANCE, STDDEV, FIRST_VALUE, LAST_VALUE

• Reporting Aggregate family – SUM, AVG, MIN, MAX, COUNT
(with/without DISTINCT), VARIANCE, STDDEV,
RATIO_TO_REPORT

• LAG/LEAD family

• Linear Regression family - slope, intercept, correlation
coefficient

• Inverse Percentile family - PERCENTILE_DISC

Vlamis Software Solutions, Inc.

Analytic Function FamiliesAnalytic Function Families——
Sample QuestionsSample Questions

– Ranking (“Find the top 10 sales reps in each
region.”)

– Moving aggregates (“What is the 200-day moving
average of our company’s stock price?”)

– Period-over-period comparisons (“What is the
percentage growth of January 1999 over January
1998?”)

– Ratio-to-report (“What are January’s sales as a
percentage of the entire year’s?”)

Vlamis Software Solutions, Inc.

Analytic Function BenefitsAnalytic Function Benefits

• Analytic functions are not intended to replace
OLAP environments; rather, they may be used
by OLAP products like Oracle's Express to:

– Improved Query Speed

– Enhanced Developer Productivity

– Minimized Learning Effort

– Standardized Syntax

Vlamis Software Solutions, Inc.

Analytic Function BenefitsAnalytic Function Benefits

• Analytic functions lend statistical muscle that has in
the past called for joins, unions, and complex
programming.

• Performance is improved (sometimes significantly)
because the functions are performing work that
previously required self-joins and unions.

• Using Analytic functions requires far less SQL coding
than previously required to accomplish the same task
because one SQL statement takes the place of many.

• Analytic functions allow division of results into
ordered groups

Vlamis Software Solutions, Inc.

Analytic SQL Processing Analytic SQL Processing
ConceptsConcepts

• Processing Order – 3 stages

• Result Set Partitions -- unrelated to Oracle's
table partitions feature

• Window -- For each partition

• Current Row

The Current Row is inside a Window, a
Window is inside a Partition, and a Partition
is inside of the Result Set.

Vlamis Software Solutions, Inc.

Processing Order Processing Order –– 3 stages3 stages

joins,
WHERE,

 GROUP BY,
& HAVING

clauses

Partitions created;
Analytic functions

applied to each row
in each partition

Final
ORDER

BY

Vlamis Software Solutions, Inc.

Analytic Function Query PartitionsAnalytic Function Query Partitions

• Query result sets are divided into ordered groups
called Partitions*

• Partitioning takes place after GROUP BY.
• Result sets may be divided into as many partitions as

makes sense for the values being derived.
• Partitioning may be performed using expressions or

column values.
• Each result set may represent a single Partition, a few

larger Partitions, or many small Partitions.
• Each Partition may be represented by a sliding

Window defining the range of rows used for
calculations on the Current Row.

• *unrelated to database table partitioning

Vlamis Software Solutions, Inc.

Window and Current RowWindow and Current Row

P a r t i t i o n s t a r t

P a r t i t i o n f i n i s h

C u r r e n t r o w : c a l c u l a t i o n s b a s e d o n w i n d o w c o n t e n t s

W i n d o w s t a r t

W i n d o w f i n i s h

D i r e c t i o n o f
w i n d o w m o v e m e n t

Vlamis Software Solutions, Inc.

Analytic Function WindowsAnalytic Function Windows

• Windows may be defined representing a
number of physical rows

• Each Window has a starting row and an
ending row and may slide either direction

• A moving average would slide both
directions so that the averaging made sense.

• Windows may represent 1 or more rows in a
partition (or the entire partition).

Vlamis Software Solutions, Inc.

Current RowCurrent Row

• Each analytic function is based upon a
current row within a Window (defined by
OVER or ORDER BY clause)

• Current Row is the reference point setting the
start and end of a window

• A moving average defines a window that
begins in a range or rows surrounding the
current row.

Vlamis Software Solutions, Inc.

Standard SQL Example Standard SQL Example –– three three
unionsunions

• SQL> -- Here is the pure SQL way with accesses to the employee table
• SQL>
• SQL> SELECT deptno, job, SUM(sal) sal ß Provides the dept-job totals
• 2 FROM emp
• 3 GROUP BY deptno, job
• 4 UNION
• 5 SELECT deptno, NULL job, SUM(sal) sal ß Provides the dept sub totals
• 6 FROM emp
• 7 GROUP BY deptno
• 8 UNION
• 9 SELECT TO_NUMBER(NULL) deptno, NULL job, SUM(sal) sal ß The

grand total
• 10 FROM emp
• 11 ORDER BY deptno, job;

Vlamis Software Solutions, Inc.

Standard SQL Example Standard SQL Example –– three three
unions result setunions result set

• DEPTNO JOB SAL
• ----------- --------- ---------
• 10 CLERK 1300
• 10 MANAGER 2450
• 10 PRESIDENT 5000
• 10 8750
• 20 ANALYST 6000
• 20 CLERK 1900
• 20 MANAGER 2975
• 20 10875
• 30 CLERK 950
• 30 MANAGER 2850
• 30 SALESMAN 5600
• 30 9400
• 29025
• 13 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– same same
three unions three unions

• SQL>
• SQL> -- Here is the new way using ROLLUP and a single table access
• SQL>
• SQL> SELECT deptno, job, SUM(sal) sal
• 2 FROM emp
• 3 GROUP BY ROLLUP(deptno, job);

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– same same
three unions result setthree unions result set

• DEPTNO JOB SAL
• ----------- --------- ---------
• 10 CLERK 1300
• 10 MANAGER 2450
• 10 PRESIDENT 5000
• 10 8750
• 20 ANALYST 6000
• 20 CLERK 1900
• 20 MANAGER 2975
• 20 10875
• 30 CLERK 950
• 30 MANAGER 2850
• 30 SALESMAN 5600
• 30 9400
• 29025
• 13 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– some some
complications from NULL valuescomplications from NULL values

• SQL> -- But what if someone isn't assigned a JOB or Dept? Confusing
NULLS!

• SQL>
• SQL> SELECT deptno, job, SUM(sal) sal
• 2 FROM emp
• 3 GROUP BY ROLLUP(deptno, job);

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– NULL NULL
values in result setvalues in result set

• DEPTNO JOB SAL
• ----------- --------- ---------
• 10 CLERK 1300
• 10 MANAGER 2450
• 10 3750
• 20 ANALYST 6000
• 20 CLERK 1900
• 20 MANAGER 2975
• 20 10875
• 30 CLERK 950
• 30 MANAGER 2850
• 30 SALESMAN 4350
• 30 1250 ß Is this a subtotal?
• 30 9400 ß What about this row?
• PRESIDENT 5000
• 5000
• 29025
• 15 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Grouping Grouping
FunctionFunction

• SQL>
• SQL> -- Use GROUPING Function. Example uses new 8i CASE function
• SQL> -- and traditional old DECODE function
• SQL>
• SQL> SELECT
• 2 CASE WHEN GROUPING(deptno) = 1
• 3 THEN 'All Depts'
• 4 WHEN (GROUPING(deptno) = 0 AND deptno IS NULL)
• 5 THEN 'No Dept'
• 6 ELSE TO_CHAR(deptno) END AS deptno,
• 7 DECODE(GROUPING(job),
• 8 1, 'All Jobs',
• 9 0, NVL(job,'No Job')) AS job,
• 10 SUM(sal) sal
• 11 FROM
• 12 emp
• 13 GROUP BY
• 14 ROLLUP(deptno,job);

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Grouping Grouping
Function Result SetFunction Result Set

• DEPTNO JOB SAL
• ---------- --------- ---------
• 10 CLERK 1300
• 10 MANAGER 2450
• 10 All Jobs 3750
• 20 ANALYST 6000
• 20 CLERK 1900
• 20 MANAGER 2975
• 20 All Jobs 10875
• 30 CLERK 950
• 30 MANAGER 2850
• 30 SALESMAN 4350
• 30 No Job 1250
• 30 All Jobs 9400
• No Dept PRESIDENT 5000
• No Dept All Jobs 5000
• All Depts All Jobs 29025
• 15 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Cube Cube
Function Function

• SQL>
• SQL> -- Example using CUBE
• SQL>
• SQL> SELECT deptno, job, SUM(sal) sal
• 2 FROM emp
• 3 GROUP BY CUBE(deptno, job);

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Cube Cube
Function Result SetFunction Result Set

• DEPTNO JOB SAL
• ---------- --------- ---------
• 10 CLERK 1300
• 10 MANAGER 2450
• 10 PRESIDENT 5000
• 10 8750
• 20 ANALYST 6000
• 20 CLERK 1900
• 20 MANAGER 2975
• 20 10875
• 30 CLERK 950
• 30 MANAGER 2850
• 30 SALESMAN 5600
• 30 9400
• ANALYST 6000
• CLERK 4150
• MANAGER 8275
• PRESIDENT 5000
• SALESMAN 5600
• 29025
• 18 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Cube Cube
Function Subtotal and Total onlyFunction Subtotal and Total only

• SQL>
• SQL> -- And if we only wanted the subtotal and grand total lines
• SQL>
• SQL> SELECT
• 2 DECODE(GROUPING(deptno),1,'All Depts',deptno) deptno,
• 3 DECODE(GROUPING(job),1,'All Jobs',job) job,
• 4 SUM(sal) sal
• 5 FROM
• 6 emp
• 7 GROUP BY
• 8 CUBE(deptno, job)
• 9 HAVING
• 10 GROUPING(deptno) = 1 OR GROUPING(job) = 1;

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Cube Function Cube Function
Subtotal and Total only Result SetSubtotal and Total only Result Set

• DEPTNO JOB SAL
• ---------- --------- ---------
• 10 All Jobs 8750
• 20 All Jobs 10875
• 30 All Jobs 9400
• All Depts ANALYST 6000
• All Depts CLERK 4150
• All Depts MANAGER 8275
• All Depts PRESIDENT 5000
• All Depts SALESMAN 5600
• All Depts All Jobs 29025
• 9 rows selected.

Vlamis Software Solutions, Inc.

Rollup and Cube LimitationsRollup and Cube Limitations

• Total Rows created during GROUP BY operation.

• Total Rows can be filtered with HAVING operation.

• Total Rows sorted by ORDER BY operation.

• WHERE clause does not apply to Total Rows.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Rank Rank
Function Function

• SQL>
• SQL> -- Rank example
• SQL>
• SQL> SELECT ename, sal,
• 2 RANK() OVER (ORDER BY sal DESC NULLS LAST) AS null_rank_last,
• 3 RANK() OVER (ORDER BY sal DESC NULLS FIRST) AS null_rank_first
• 4 FROM emp;

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– Rank Rank
Function Result SetFunction Result Set

• ENAME SAL NULL_RANK_LAST NULL_RANK_FIRST
• ---------- --------- -------------------------- ---------------------------
• KING 14 1
• JONES 3000 1 2
• SCOTT 3000 1 2
• FORD 3000 1 2
• BLAKE 2850 4 5
• CLARK 2450 5 6
• ALLEN 1600 6 7
• TURNER 1500 7 8
• MILLER 1300 8 9
• WARD 1250 9 10
• MARTIN 1250 9 10
• ADAMS 1100 11 12
• JAMES 950 12 13
• SMITH 800 13 14
• 14 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example ––
PARTITION BY clausePARTITION BY clause

• SQL>
• SQL> -- Rank within department example (No skipping numbers i.e. DENSE)
• SQL>
• SQL> SELECT deptno, ename, sal,
• 2 DENSE_RANK() OVER (ORDER BY sal DESC) AS overall_rank,
• 3 DENSE_RANK() OVER (PARTITION BY deptno
• 4 ORDER BY sal DESC) AS dept_rank
• 5 FROM emp
• 6 ORDER BY deptno, sal DESC;

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example ––
PARTITION BY clause Result SetPARTITION BY clause Result Set

• DEPTNO ENAME SAL OVERALL_RANK DEPT_RANK
• ----------- ---------- --------- ------------------------ ------------------
• 10 KING 5000 1 1
• 10 CLARK 2450 4 2
• 10 MILLER 1300 7 3
• 20 JONES 3000 2 1
• 20 FORD 3000 2 1
• 20 SCOTT 3000 2 1
• 20 ADAMS 1100 9 2
• 20 SMITH 800 11 3
• 30 BLAKE 2850 3 1
• 30 ALLEN 1600 5 2
• 30 TURNER 1500 6 3
• 30 WARD 1250 8 4
• 30 MARTIN 1250 8 4
• 30 JAMES 950 10 5
• 14 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example ––
RATIO_TO_REPORT functionRATIO_TO_REPORT function

• SQL>
• SQL> -- Want to see what percentage of payroll each person is in their dept?
• SQL>
• SQL> SELECT
• 2 deptno, ename, sal,
• 3 RATIO_TO_REPORT(sal)
• 4 OVER (PARTITION BY deptno) AS pct_of_dept
• 5 FROM
• 6 emp
• 7 ORDER BY
• 8 deptno, sal DESC;

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example ––
RATIO_TO_REPORT function RATIO_TO_REPORT function
Result SetResult Set

• DEPTNO ENAME SAL PCT_OF_DEPT
• ----------- ---------- --------- -----------
• 10 KING 5000 .57
• 10 CLARK 2450 .28
• 10 MILLER 1300 .15
• 20 JONES 3000 .28
• 20 SCOTT 3000 .28
• 20 FORD 3000 .28
• 20 ADAMS 1100 .10
• 20 SMITH 800 .07
• 30 BLAKE 2850 .30
• 30 ALLEN 1600 .17
• 30 TURNER 1500 .16
• 30 WARD 1250 .13
• 30 MARTIN 1250 .13
• 30 JAMES 950 .10
• 14 rows selected.

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– InIn--Line Line
Views and TopViews and Top--N StatementsN Statements

• SQL>
• SQL> -- Top-N example - get top two salary earners; notice ties are split
• SQL>
• SQL> SELECT *
• 2 FROM (SELECT ename, sal
• 3 FROM emp
• 4 ORDER BY sal DESC) emp
• 5 WHERE rownum < 3;

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– InIn--Line Views Line Views
and Topand Top--N Statements Result SetN Statements Result Set

• ENAME SAL
• ---------- ---------
• KING 5000
• JONES 3000

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– InIn--Line Line
Views and TopViews and Top--N Statements N Statements
RevisedRevised

• SQL>
• SQL> -- And to get the top 2 salary earners in each group - ties not split
• SQL>
• SQL> SELECT deptno, ename, sal
• 2 FROM (SELECT deptno, ename, sal,
• 3 RANK() OVER (PARTITION BY deptno
• 4 ORDER BY sal DESC) AS dept_rank
• 5 FROM emp) emp
• 6 WHERE dept_rank < 3;

Vlamis Software Solutions, Inc.

Analytic SQL Example Analytic SQL Example –– InIn--Line Line
Views and TopViews and Top--N Statements N Statements
Revised Result SetRevised Result Set

• DEPTNO ENAME SAL
• ----------- ---------- ---------
• 10 KING 5000
• 10 CLARK 2450
• 20 JONES 3000
• 20 SCOTT 3000
• 20 FORD 3000
• 30 BLAKE 2850
• 30 ALLEN 1600
• 7 rows selected.

Vlamis Software Solutions, Inc.

"Top N" Queries using RANK/DENSE_RANK"Top N" Queries using RANK/DENSE_RANK

• "Top N" queries may be solved easily by
using RANK or DENSE_RANK in dynamic
view (query in FROM clause).

• NULLs are treated like normal values and for
ranking are treated as equal to other NULLs.

• The ORDER BY clause may specify NULLS
FIRST or NULLS LAST.

• If unspecified, NULLS are treated as larger
than any other value and appear depending
upon the ASC or DESC part of the ORDER
BY.

Vlamis Software Solutions, Inc.

ConclusionsConclusions

• Analytic functions lend statistical muscle that has in
the past called for joins, unions, and complex
programming.

• Performance is improved (sometimes significantly)
because the functions are performing work that
previously required self-joins and unions.

• Using Analytic functions requires far less SQL coding
than previously required to accomplish the same task
because one SQL statement takes the place of many.

• Analytic functions allow division of results into
ordered groups

Vlamis Software Solutions, Inc.

Oracle’s SQL Analytic Oracle’s SQL Analytic
Functions in 8i and 9iFunctions in 8i and 9i

Presentation #278Presentation #278

IOUG-A Live! 2001

Presented by:

David Fuston

Vlamis Software Solutions, Inc.
(816) 781-2880

dfuston@vlamis.com

http://www.vlamis.com

Copyright © 2001 Vlamis Software Solutions, Inc.

