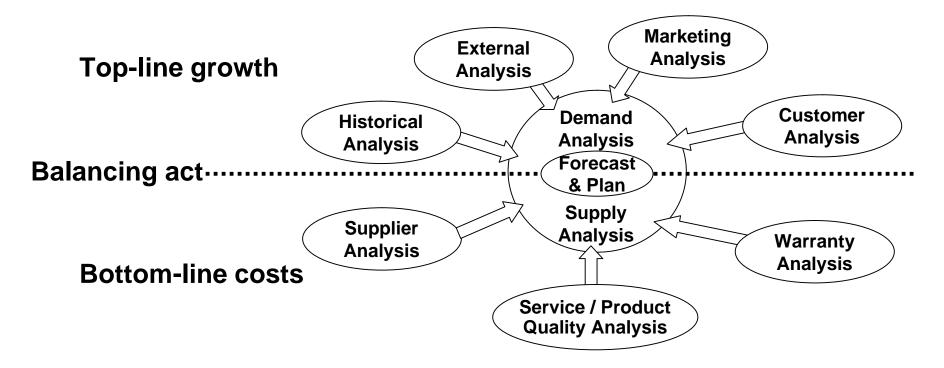

Business Intelligence for Everybody

October 2005

Dan Vlamis dvlamis@vlamis.com Vlamis Software Solutions, Inc. 816-781-2880 http://www.vlamis.com

Vlamis Software Solutions, Inc.

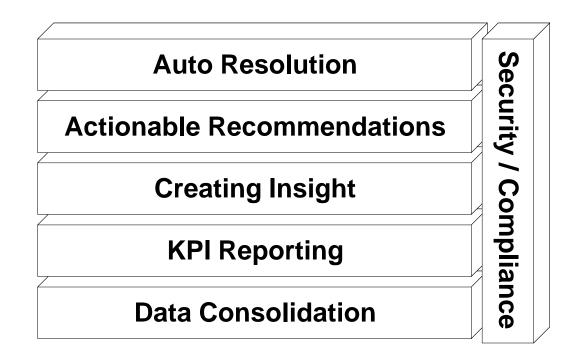
- Founded in 1992 in Kansas City, Missouri
- Oracle Partner and reseller since 1995
- Specializes in ORACLE-based:
 - Data Warehousing
 - Business Intelligence
 - **Data Transformation (ETL)**
 - Web development and portals
 - □ Express-based applications
- Delivers
 - Design and integrate BI and DW solutions
 - □ Training and mentoring
- Expert presenter at major Oracle conferences


- Dan Vlamis, President of Vlamis Software
 - Developer for IRI (former owners of Express)
 - □ Founded Vlamis Software in 1992
 - Beta tester and early adopter of Oracle OLAP
 - □ Expert speaker and author
 - □ "Techie" on OLAP DML
 - □ Recognized expert in Express and OLAP industry

Agenda

- Background on BI Why important?
- What are the parts of Oracle BI?
- How does Oracle OLAP fit in?
- OLAP Cubes and Analytic Workspaces
- Front-end options
- Case studies of Oracle OLAP in the "real world"

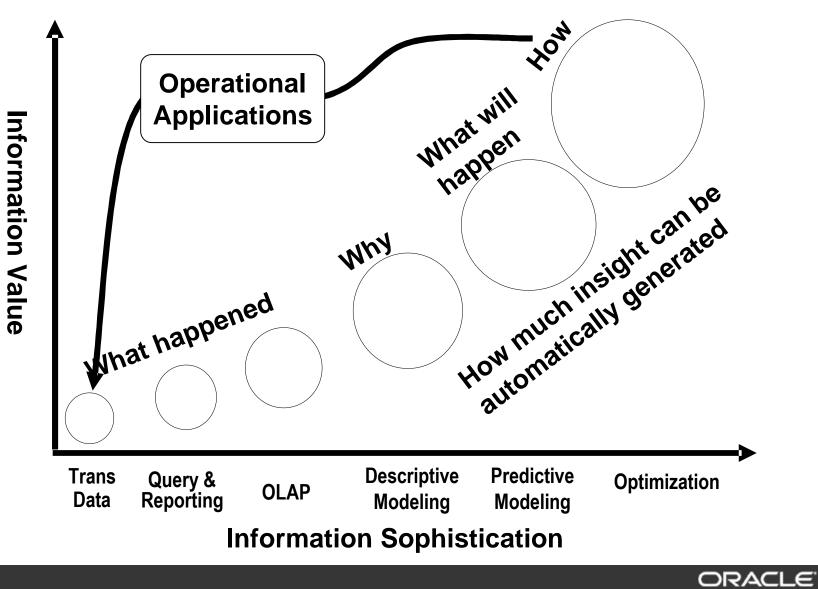
Why is Business Intelligence Important



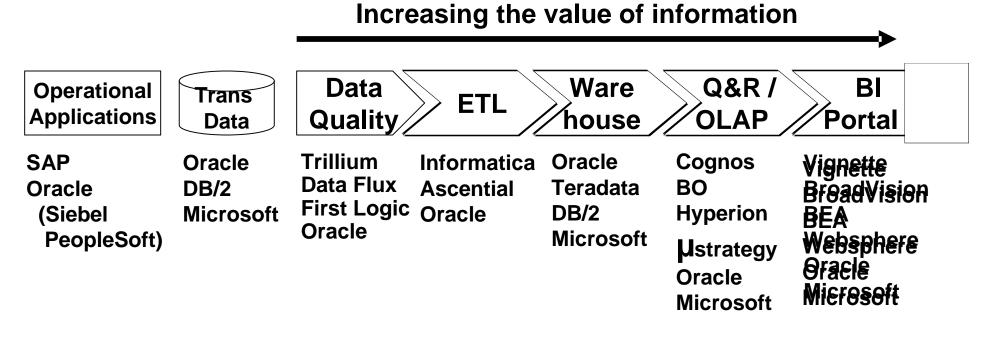
- The *ideal goal* of Planning and Forecasting in any organization is to balance the Demand-side with the Supply-side
- Business Intelligence is an *integral part* of Planning and Forecasting

ORACLE

- Gain sustainable competitive advantage with BI
- Oracle *delivers* this capability via its integrated BI Stack


Information Maturity Model

Business Intelligence and Business Integration from Oracle can help your organization securely move up this Information Maturity Model.


ORACLE

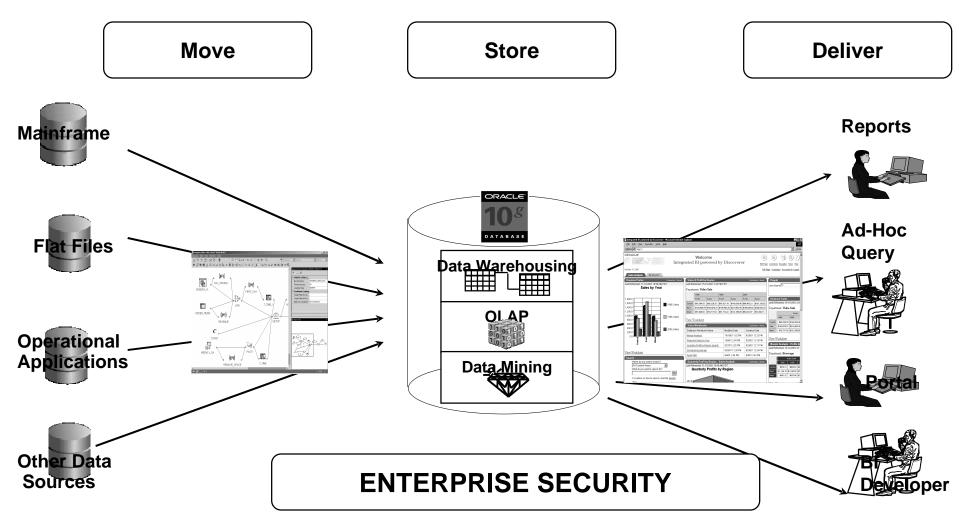
Return on Information

BI Today: Typical Organizations

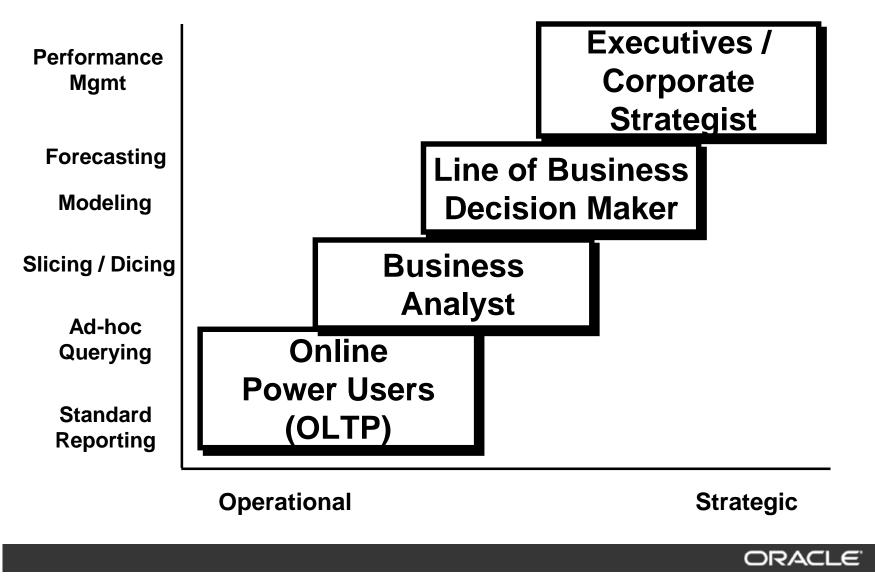
Access and dissemination of Historical Information

Best of Breed or Non-integrated Silos?

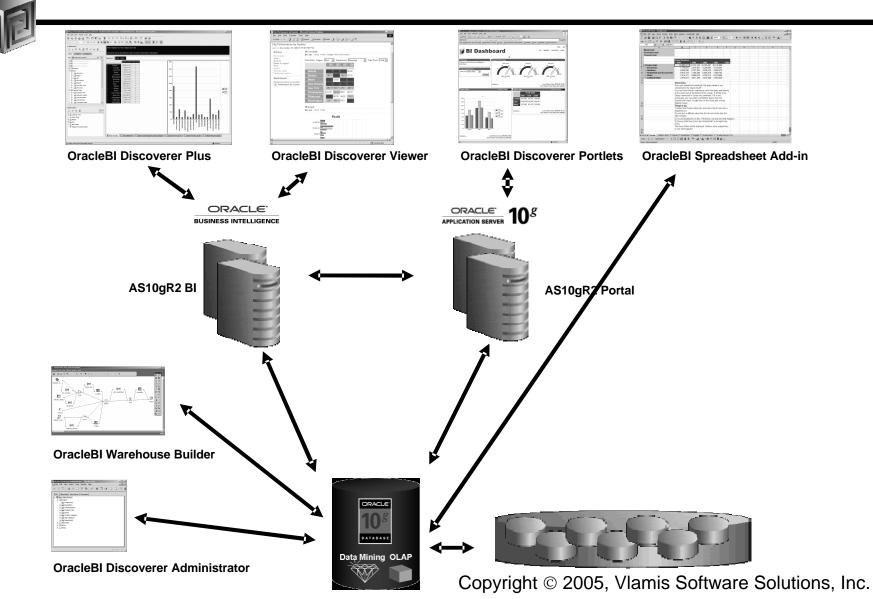
ORACLE


How did we get here? Multi-component, Non-integrated

ORACLE


- Decreasing ROI
- Maintenance complexity/costs
- Hurdles to next step

The Complete Oracle Solution



Enterprise BI Solution for Everyone

Oracle BI Product Architecture

Definition of OLAP

OLAP stands for On Line Analytical Processing. That has two immediate consequences: the on line part requires the answers of queries to be fast, the *analytical* part is a hint that the queries itself are complex.

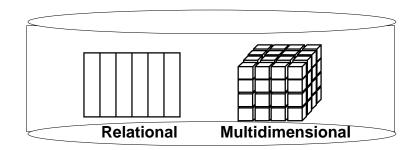
i.e. Complex Questions with FAST ANSWERS!

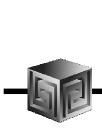
Why a Separate OLAP Tool?

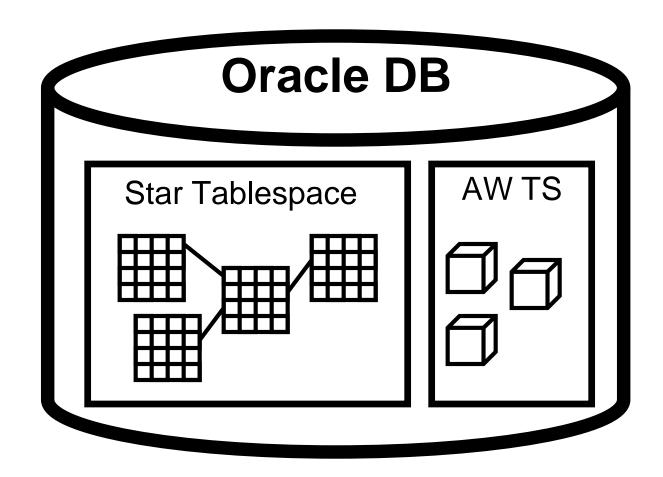
- Empowers end-users to do own analysis
- Frees up IS backlog of report requests
- Ease of use
- Drill-down
- No knowledge of SQL or tables required
- Exception Analysis
- Variance Analysis

What Does Oracle OLAP Add to a DW?

- Multidimensional user view of data
- Users create own reports
- Users create own measures
- Easy drill-down, rotate
- Iterative discovery process (not just reports)
- Ad-hoc analysis
- Easy selection of data with business terms
- OLAP DML with what-if, forecasting
- Platform for extensions


OLAP Option – High-level View


- Advanced analytics
- Integrated in RDBMS
- Easy to develop
- Easy to use
- Facilitate collaboration
- Flexible deployment
- Scaleable and performant
- True Relational Multidimensional database

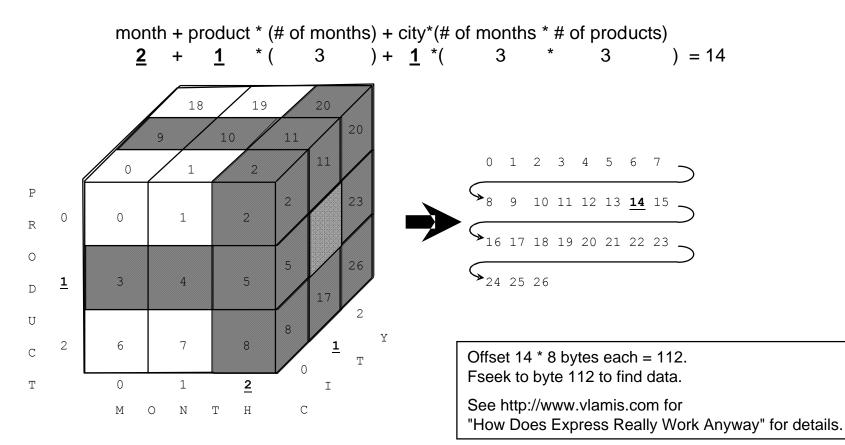

ROLAP vs. MOLAP

- What is ROLAP? (Relational)
- What is MOLAP? (Multidimensional)
- It's all in how the data is stored

Analytic Workspaces Are Stored in Tablespaces in OLAP

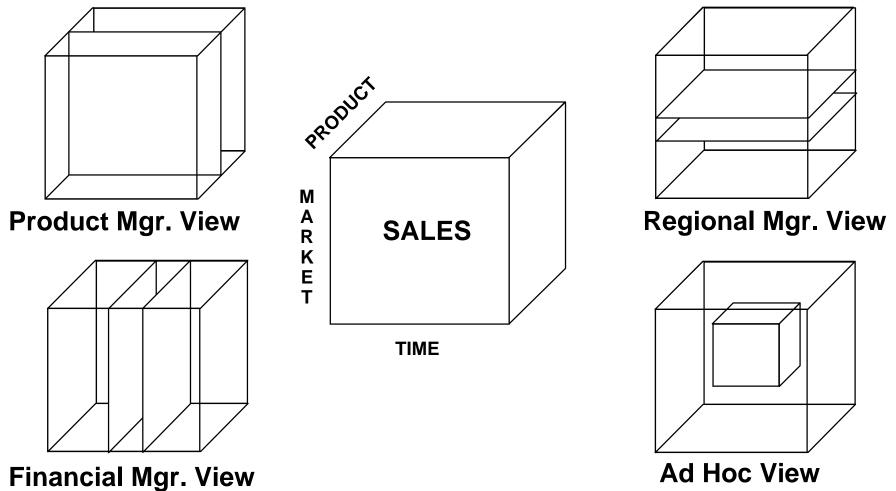
What is an Analytic Workspace?

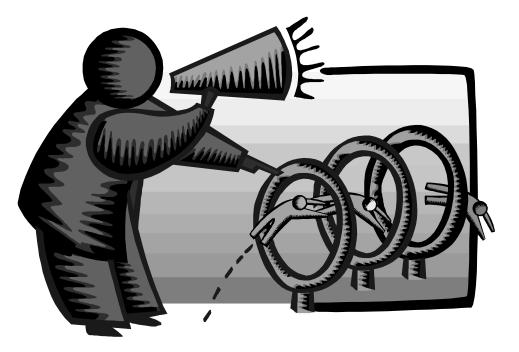
« Oracle Enter Eile <u>N</u> a									
3) ¢⊂ ≪	_OBAL_AW DTables AW\$GLOBAL DTables	Name: Schema: Tablespace:	AW\$GLOI GLOBAL GLOBAL O Organi	AWV	Options LOB Storage Statistics				
?	DATE_TAB	Name		Datatype	Size	Scale	Nulls?		
		PS#		NUMBER	10	0	~		
	Dindexes	GEN#		NUMBER	10	0	~		
]Views	EXTNUM		NUMBER	8	0	~		
© ⊕-□ Synonyms		AWLOB		BLOB			~		
	DSequences	OBJNAME		VARCHAR2	60		~		
~ U	Clusters	PARTNAME		VARCHAR2	60		~		
	Source Types								
	User Types				1				


Managing Analytic Workspaces

■ Analytic Workspace Manager dantoshm2: 	1521:orcl Model V	iew		-DX			
E GLOBAL	Dimensions:						
DE A GLOBAL_AW	Name		ong Description	Туре			
Analytic Workspaces	CHANNEL		hannel	User			
🖻 👩 GLOBAL (attached RW)	CUSTOMER		ustomer	User			
🖻 🖓 Dimensions	PRODUCT		roduct	User			
다 🏳 CHANNEL	TIME		me	Time			
E Levels			ž.	•			
ー 5 TOTAL_CH - 5 CHANNEL ⊕ □ 1 Hierarchies ※	Cubes:						
⊕ C Attributes	SALES_CUBE Sales Cube TIME,CUSTOMER,PRODUC						
Mappings	PRICE_AND_CO PRICE AND TIME, PRODUCT						
			1				
				•			
Erica nime Cubes Erica Cubes Measures:							
	Name	Ci	ube				
	SALES	SA	ALES_CUBE				
	UNITS	SA	ALES_CUBE	333			
	BASE_COST		ALES_CUBE				
	COST		ALES_CUBE				
🕀 🔂 Measure Folders 🗨	BASE_PRICE	SA	ALES_CUBE	-			

Finding data is simple multiplication and addition


Formula for calculating cell offset:


Copyright $\ensuremath{\textcircled{O}}$ 2005, Vlamis Software Solutions, Inc.

OLAP AW Stores Data in Cubes

Fast Flexible Access to Summarized Data

Building Cubes in AWM

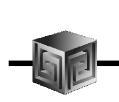
See November / December 2005 Oracle Magazine for 4-page article "Use Oracle AWM 10g to build analytic workspaces" with details

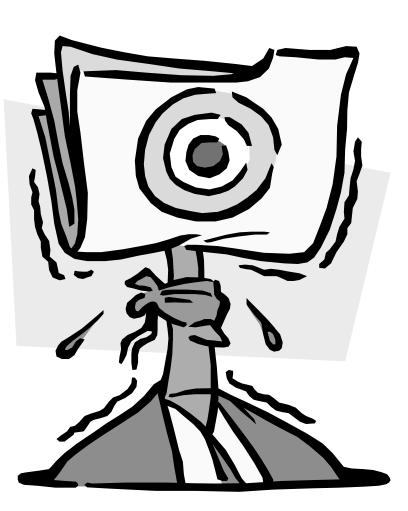
Copyright $\ensuremath{\mathbb{C}}$ 2005, Vlamis Software Solutions, Inc.

Oracle BI – Getting the Data In

- Storing / calculating with the data □ Oracle RDBMS
 - □ Oracle OLAP (an option to the RDBMS)
- Getting the data in / managing
 - □ Oracle Warehouse Builder
 - □ Oracle Enterprise Manager
 - □ Analytic Workspace Manager

Getting the Data Out


- Once the Data is in OLAP how do we get the data out?
- Alternatives
 - □ BI Beans applications (Custom or pre-built)
 - Discoverer
 - Oracle Reports
 - □ SQL Access from any SQL tool
 - □ Spreadsheet Add-in
 - Any except Spreadsheet add-in can be in a portal and with web interface


Demonstration of BI Application

QUESTIONS?

- Manufacturing company needs to reduce inventory levels
- Uses OLAP DML Forecast command based on orders
- Users can override forecasts and add their own promotional campaigns
- Computes more accurate forecasts of production needs, reducing inventory levels
- Can compare accuracy of monthly forecasts by comparing various "scenarios" each month with actual shipments
- Application presented as JSP for business forecasters / managers

- Service organization with call center wants to minimize hold time but not increase headcount
- Solution is to analyze hold time and customer resolution time for each support analyst
- Can rank support engineers / departments by customer satisfaction / resolution / callback rates
- Can pay bonus based on quantifiable results

- Oil company has complex GL and existing Express-based "business rules engine" for allocating costs and income
- Uses Oracle OLAP engine to develop models to allocate data based on rules analysts develop
- Users can develop their own way of analyzing the data rather than relying on IT
- IT sets up infrastructure, users develop actual analyses

Oracle OLAP Case 3 (continued)

- Company has existing Express application that meets user needs, but wants to modernize U/I and run with web interface
- Export/import existing Express databases to Oracle OLAP AWs
- Back-end code works as-is
- Front-end code rewritten in Oracle OLAP Web Agent (OLAP DML)
- "Application Generator" allows business users to create entirely new applications with their own multi-dimensional objects

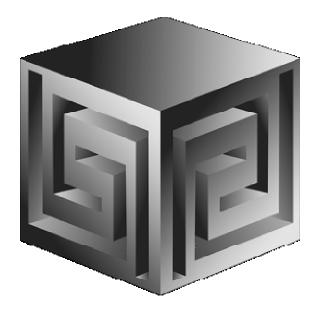
- Manufacturer wants an ad-hoc analysis and reporting against sales data warehouse
- Users need easy-to-use interface and limited custom analysis capabilities
- Front-end is BI Beans custom JSP with crosstabs customized for user needs
- "Custom selector" allows users to select data
- Highlights importance of "returns"
- Daily data allows managers to impact EOM numbers
- Company changing business practices now

- CPG company has existing Oracle Sales Analyzer implementation
- Company wants to explore using OracleBI to update technology
- Created Proof-of-concept dimensional model in less than 40 hours
- Demonstrated two techniques:
 - Export out data and import into Oracle OLAP
 - □ Use AWM to map to star schema data warehouse
- Company evaluating Discoverer OLAP

- Shipping company wants to flexibly report data with many custom calculations
- Company used to multidimensional tools, but wants solution integrated with Oracle
- Many users accustomed to Excel
- Company wants training, but ends up needing consulting to get going
- Company now creating cubes on their own, using Excel add-in as their front-end of choice

- Presentation of data is by various attributes of Equities such as Market Capitalization, Industry, etc.
- Users want to drill from groups of stocks to individual equities, changing dimensionality
- Custom OLAP DML code transforms data with models when copying from one cube to another

- ASP Company using Oracle OLAP to deliver analysis of web traffic to clients
- Building separate AW for each client
- Uses templates to share common "dimensions" across multiple implementations
- Each client gets separate AW so each can customize dimensional model to their needs
- Building ASP offering around Oracle BI/OLAP



Managing a BI Project

- Involve end-users early on
- Prototype, pilot, then phase 1
- Recruit "champion" users
- Lead from user community, not IT
- Develop in phases
- Provide value early on
- Keep it simple (at first)
- Need forum for users to share ideas
- Provide user guide with user's data

Business Intelligence for Everybody

October 2005

Dan Vlamis dvlamis@vlamis.com Vlamis Software Solutions, Inc. 816-781-2880 http://www.vlamis.com