Fast Complex BI Analysis with Oracle OLAP

Oracle OpenWorld 2011

Dan Vlamis Vlamis Software Solutions 816-781-2880 http://www.vlamis.com

Vlamis Software Solutions, Inc.

- Founded in 1992 in Kansas City, Missouri
- Oracle Partner and reseller since 1995
- Developed more than 200 Oracle BI systems
- Specializes in ORACLE-based:
 - Data Warehousing
 - Business Intelligence
 - Data Transformation (ETL)
 - Web development and portals
- Delivers
 - Design and integrated BI and DW solutions
 - Training and mentoring
- Exclusive supplier world-wide for Windows-based
- Oracle BIC2G BI & EPM VMs
- Expert presenter at major Oracle conferences
- www.vlamis.com (blog, papers, newsletters, services)

Dan Vlamis Background

- Connected with Oracle product management and developers
- Oracle ACE
- President of Vlamis Software Solutions, Inc. since 1992
- Speak at national software conferences
- Co-author of book "Oracle Essbase & Oracle OLAP"
- Track chair for 2011 Collaborate conference
- BA Computer Science Brown University
- <u>dvlamis@vlamis.com</u> 816-781-2880

Why OLAP for BI?

- BI often presents data dimensionally
- Dimensions are natural way to look at data
 - By, across, over, time, geography, product
 - Comparison of multiple dimension values
- Multi-dimensional storage of data speeds analysis
- Natural to express dimensional comparisons
 - Share of parent
 - Compared to last year
- Allows for hierarchical dimensions with multiple levels
 - E.g. by country, drill to state, drill to city

Oracle OLAP

Leveraging Core Database Infrastructure

- Single RDBMS-MDBMS process
- Single data storage
- Single security model
- Single administration facility
- Grid-enabled
- Accessible by any SQL-based tool
- Embedded BI metadata
- Connects to all related Oracle data

Oracle OLAP

- A summary management solution for SQL based business intelligence applications
 - An alternative to table-based materialized views, offering improved query performance and fast, incremental update
- A full featured multidimensional OLAP server
 - Excellent query performance for adhoc / unpredictable query
 - Enhances the analytic content of Business intelligence application
 - Fast, incremental updates of data sets

Materialized Views Typical MV Architecture Today

- Query tools access star schema stored in Oracle data warehouse
- Most queries at a summary level
- Summary queries against star schemas can be expensive to process

Materialized Views Automatic Query Rewrite

- Most DW/BI customers use Materialized Views (MV) today to improve summary query performance
- Define appropriate summaries based on query patterns
- Each summary is typically defined at a particular grain
 - Month, State
 - Qtr, State, Item
 - · Month, Continent, Class
 - · etc.
- The SQL Optimizer automatically rewrites queries to access MV's whenever possible

Materialized Views Challenges in Ad Hoc Query Environments

MicroStrategy

- Creating MVs to support ad hoc query patterns is challenging
- Users expect excellent query response time across any summary
- Potentially many MVs to manage
- Practical limitations on size and manageability constrain the number of materialized views

Cube-based Materialized Views Much Better Manageability & Performance

- A single cube provides the equivalent of thousands of summary combinations
- The 11g SQL Query
 Optimizer treats OLAP cubes
 as MV's and rewrites queries
 to access cubes
 transparently
- Cube refreshed using standard MV procedures

Cost Based Aggregation Pinpoint Summary Management

- Precomputed
- Computed when queried

- Improves aggregation speed and storage consumption by precomputing cells that are most expensive to calculate
- Easy to administer
- Simplifies SQL queries by presenting data as fully calculated

Easy Analytics Fast Access to Information Rich Results

- Time-series calculations
- Calculated Members
- Financial Models
- Forecasting
 - Basic
 - Expert system
- Allocations
- Regressions
- Custom functions
- ...and many more

Snapshot of some functions

deprdect	aggregate	abs	rank	chgdims
deprdecisw	allocate	antilog	rem	instat
deprsl	categorize	antilog10	remainder	limit function
deprsoyd	correlation	arccos	round	statall
fintsched	fcopen	arcsin	sign	statdepth
fpmtsched	fcquery	arctan	sin	statequal
growrate	info	arctan2	sinh	statfirst
irr	norm al	bin_to_num	smooth	statlast
npv	random	bitand	sort	statlen
vintsched	stddev	ceil	sqrt	statlist
vpmtsched	any	cos	tan	statmax
cumsum	average	cosh	tanh	statmin
lag	count	decode	truncate	statrank
lagabspct	every	ехр	width_bucket	statval
lagdif	largest	floor	begindate	coalesce
lagpct	median	greatest	dayof	na2
lead	mode	intpart	ddof	nafill
movingaverage	none	least	enddate	naflag
movingmax	percentage	log function	endof	nullif
movingmin	smallest	log10	isdate	nvl
movingtotal	forecast	max	makedate	nvl2
total	modulo	min	mmof	ascii

How do Expenses compare this Quarter versus Last Quarter What is an Item's Expense contribution to its Category?

- Data stored in dense arrays
- Offset addressing no joins
- More powerful analysis
- Better performance

One Cube Accessed Many Ways...

- One cube can be used as
 - A summary management solution to SQL-based business intelligence applications as cube-organized materialized views
 - A analytically rich data source to SQL-based business intelligence applications as SQL cube-views
 - A full-featured multidimensional cube, servicing dimensionally oriented business intelligence applications

Cube Represented as Star ModelSimplifies Access to Analytic Calculations

- Cube represented as a star schema
- Single cube view presents data as completely calculated
 - Analytic calculations presented as columns
 - Includes all summaries
- Automatically managed by OLAP

Empowering Any SQL-Based Tool Leveraging the OLAP Calculation Engine

Application Express on Oracle OLAP

Building Cubes in AWM

Same Data, Multiple Frontends

Excel as Front End for Database

Top OLAP 11g New Features

- SQL Query
 - SQL cube scan
 - SQL cube join
 - CUBE_TABLE
 - Optimized looping
 - System maintained dimension and fact views
- SQL-like calculation expressions
- Cost-based aggregation
- Security
 - SQL Grant / Revoke
 - Permit with Extensible Data Security and AWM

Top OLAP 11g New Features

- Cube and maintenance scripts
 - Declarative calculation rules
 - Based on logical model
- All metadata in the Oracle Data Dictionary
 - Dimensional Model
 - Calculation definitions
 - Security policies
 - Data source mappings
 - SQL representation of model

Oracle OLAP 11g Summary

- Improve the delivery of information rich queries by SQL-based business intelligence tools and applications
 - Fast query performance
 - Simplified access to analytic calculations
 - Fast incremental update
 - Centrally managed by the Oracle Database

OLAP as a Calculation Engine

- How are we doing?
- Facts have more meaning in context
- Context often requires inter-row calculations
- OLAP excels at inter-row calculations
- Ratios automatically scale and normalize data
- Examples:
 - Share of region
 - Share of parent
 - Percent change from year ago
 - Index calculations

Calculations in the Database

- Prototype in the report
- Move to middle tier to standardize and simplify and scale
- Move to database tier for performance
- Data volumes are expanding
- Analytic DB options do the calculations in the DB
 - OLAP
 - Data Mining
 - Spatial

OBIEE Using Database for Calcs

Oracle OLAP Learning Opportunities

Presenter	Company	Time	Title	
Dan Vlamis	Vlamis	Sun 9:00	Fast Complex BI with Oracle OLAP	
	Oracle Demo	Mosc South SL-054	Using Oracle OLAP for Advanced Analytics in BI and Data Warehousing	
	Vlamis & Simba	Tues 5:00	Reception	
Amyn Rajan	Simba	Wed 10:15	Using Excel and Oracle for Business Intelligence and Ad Hoc Reporting	
Marty Gubar	Oracle	Thurs 9:00	Developing Cubes with Advanced Analytics in Oracle Database 11 <i>g</i>	
Bud Endress	Oracle	Thurs 1:30	How to Add Rich Analytics to Your Oracle Data Warehouse	
Chris Claterbos	Vlamis	Thurs 3:00	Fast Complex BI with Oracle OLAP	
Russ Tront	Simba	Thurs 3:00	Enabling Oracle OLAP for Enterprise Business Intelligence	

OLAP Reception

You're Invited

Please join Simba Technologies and Vlamis Software Solutions at a special **OpenWorld 2011 reception** for current and prospective Oracle OLAP users.

Cocktails and hors d'oeuvres will be served.

Location: Oola Restaurant and Bar

860 Folsom Street, San Francisco

(map on reverse)

Time: Tuesday, October 4th, 2011

5pm - 7pm

By Invitation Only

For the Complete Technology & Database Professional

MARK YOUR CALENDARS!

BIWA Summit @

COLLABORATE 12
April 22-26, 2012
Mandalay Bay Convention Center
Las Vegas, Nevada

http://events.ioug.org/p/cm/ld/fid=15

ENGINEERED FOR INNOVATION

October 2-6, 2011

Moscone Center San Francisco

